700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 物理试验员培训心得体会实用 物理监测实训心得(四篇)

物理试验员培训心得体会实用 物理监测实训心得(四篇)

时间:2022-05-23 01:55:26

相关推荐

物理试验员培训心得体会实用 物理监测实训心得(四篇)

在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。

关于物理试验员培训心得体会实用一

【学习时间】1课时

【课程标准】知道牛顿第一定律

【内容分析】牛顿第一定律是力学中重要的基本定律之一,也是培养学生分析、概括,推理能力很好的素材。本节课是在学习了运动学和力学知识基础上,首次将力和运动联系起来,研究力和运动的关系和规律的知识,本课内容在初中物理知识体系中占有重要的地位,为后面平衡力等知识的学习打下坚实的基础,起到承前启后的作用。因此教材比较注意科学地编排内容,它把理论联系实际,还把物理知识融入到生活中去,能让学生觉得物理就在身边,从而激发学生继续学习物理的兴趣。本节需要两课时,第一课时主要安排学生实验得出牛顿第一定律的内容。第二课时要理解惯性的内容。

【学情分析】通过实验并不能直接得出牛顿第一定律,它是总结事实,分析、概括、推理得出的,这方面要注意强调。

【学习目标】1、通过分析具体事例,知道力对物体运动的影响;

2、通过探究阻力对物体运动的影响知道力不是维持物体运动的原因,而是改变物体运动状态的原因;

3、通过教师整合说明,知道牛顿第一定律内容;

4、通过探究阻力对物体运动的影响,培养学生观察和实验能力、逻辑推理能力和科学想象能力。

【评价设计】1、通过问题1、2、3、4、5、6检测目标1的达成。

2、通过问题7、8、9、10、11检测目标2的达成。

3、通过教师整合说明和问题12检测目标3的达成。

4、通过问题8、9、10、11检测目标4的达成。

【学习过程】

一、导入新课:(教师根据学生看到的演示实验,在设置问题,引发深入思考)

出示斜面、小车演示:

(1)、用力拉小车在水平木板上前进。

(2)、停止用力,小车停止。

问题1:什么原因使小车前进?

问题2:能否说物体运动必须受力?

问题3:运动需要力来维持吗?

(3)、将小车放在斜面上,放手后让小车滑下。

问题4:到水平面上后会立即停止吗?

问题5:小车能一直运动下去吗?

问题6:小车到达水平面时,虽然在水平方向上没有受拉力,但仍然继续前进,运动需要力来维持吗?

(4)教师总结:学生形成两种不同结论分别代表古希腊学者亚里士多德:运动需要力来维持;意大利科学家伽利略运动不需要历来维持。(板书他们的观点)

问题7:小车到达水平面时,虽然在水平方向上没有受拉力,但仍然继续前进;虽然能继续前进,却不能一直运动下去,这是为什么?

(5)教师总结:阻力会影响物体的运动。

二、探究:阻力对物体运动的影响(通过教师创设问题,转化成可操作性强的具体任务,学生在完成任务同时,进行了合作、交流、思考,同时知道了自己应支持谁的观点)

问题8:小车在水平面上前进的距离与哪些因素有关?

(教师让学生充分猜想后,总结:斜面坡度,小车质量,小车起始高度,水平面的阻力。)

问题9:研究小车在水前进的距离和水平面对它阻力的关系,你应该如何设计实验?

(学生猜想,小组讨论,分享猜想设计的依据和研究方案。)

教师总结:运用控制变量法必须让其他因素相同,表面粗糙程度不同。即在同一斜面上用同一小车在同一位置开始运动,分别在不同粗糙程度不同的表面进行多次试验。

选择合理方案,让学生分组进行试验。

教师根据实验引导学生分析:

问题10:三个表面相比,哪个阻力最小,哪个阻力最大?

问题11:小车在木板上运动得最远,在毛巾表面上运动得最近。其原因是什么?

教师引导学生总结:阻力越小,前进的距离越远,若表面更光滑,则小车所受阻力更小,前进的距离更远;若表面非常光滑,则小车所受阻力将非常小,速度减小得也将非常慢。

进一步推理问题12:如果物体不受力,它将以一个恒定的速度永远地运动下去。

通过比较推理的结果,让学生思考后用自己的话说出实验结论,得到运动和力的关系,并指出自己支持两位谁的观点。

三、教师整合说明(根据推论引出牛顿第一定律,让学生明确它不是实验结论)

英国科学家牛顿总结了伽利略等人的研究成果,概括出一条重要的物理规律:牛顿第一定律(板书课题)-----一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。(板书内容)

四、教师强调说明:(让学生加深对牛顿第一定律的理解)

(1)“一切”表明这条规律的普遍适用性,不符合这条规律的物体是不存在的。

(2)“不受力”是定律成立的条件,这是一种理想情况,它也包含物体在某一方向上不受力的情况,通常把受平衡力看成不受力。

(3)“总保持”指物体在没有受到力的作用时,只有保持静止状态或匀速直线运动两种可能,要改变这种状态,物体必须受力的作用。

(4)力不是维持物体运动的原因,而是改变物体运动状态的原因。

(5)它虽然不是直接由实验得来的,但经受了实践的检验,是公认的力学基本定律之一。

五、小结

【板书设计】:

牛顿第一定律

亚里士多德(物体运动需要力来维持)

伽利略(物体运动不需要力来维持)

一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。

(1)(2)(3)(4)(5)

关于物理试验员培训心得体会实用二

1教学目标

(1) 知识与技能

(一)理解一切行星的运动是因为太阳对行星存在引力作用。了解关于行星绕太阳运动的不同观点和引力思想形成的过程。

(二)通过开普勒第三定律和牛顿运动定律推导出太阳与行星间的引力与它们的质量乘积成正比,与距离的二次方成反比。

(2) 过程与方法

通过推导太阳与行星间的引力公式,体会逻辑推理在科学研究中的重要性。

(3) 情感态度与价值观

通过从行星运动规律到太阳与行星间的引力规律的探索,体会探究大自然规律的乐趣。

2学情分析

1.学生已有学科知识分析

高一学生已经学习了牛顿的三大定律,学习了圆周运动的知识,又学习了开普勒三大定律。理论上已经具备了接受万有引力定律的能力。

2. 学生能力分析

优势:从心理学的角度分析高一学生已经具备一定的观察力、记忆力、抽象概括力、想象力;学生对感性材料的认知能力较强;接受新知识的能力也很强。

缺点:学生在学习过程中对知识点的把握还不是很准确;数学的推理能力较弱;利用已有知识创造出新的概念、理论的能力很弱。

在教学过程中应注意引导学生从定性分析到定量分析、从形象思维到抽象思维、从简单的逻辑思维到复杂的分析推理的过渡。

3.学生所处环境、自身素质分析

一方面我国在航天事业上的突破(成功发射了神州系列宇宙飞船)、太阳系新行星的发现的报道等极大的激发了学生学习有关宇宙、航天、卫星知识的兴趣。但另一方面学生已有的有关宇宙、航天、卫星的知识仅局限于认知阶段,对于它们的规律知之甚少,甚至于存在错误的概念。所以对学习本课内容学生的愿望是迫切的,积极性很高。

3重点难点

教学重点

一、从椭圆到圆的物理模型的建立。

二、根据牛顿运动定律和开普勒第三定律推导出太阳与行星间的引力。

教学难点

根据牛顿运动定律和开普勒第三定律推导出太阳与行星间的引力。

4教学过程 4.1 第一学时 教学活动 活动1【导入】 创设情境,引入新课

播放太阳系八大行星运动视频。

提出问题:根据开普勒定律,所有行星都绕太阳做椭圆运动。椭圆运动是变速运动,运动状态在不断改变。根据牛顿运动定律:改变运动状态必须有力;那么,行星都绕太阳做变速运动应该有力,这个力从哪里来?

活动2【讲授】分析与推理

这个应只能来自于太阳;

理由:

1,力是物体对物体的作用,这个物体只有太阳;

2,不直接接触的物体间也可以产生力,如:地球与空中的苹果之间;不接触的磁体之间等;

活动3【讲授】引力猜想

太阳对行星的引力与那些因素有关?

猜想:太阳对行星的引力f应该与行星到太阳距离r有关;历史上胡克、牛顿等科学家也是这样猜想的;

活动4【讲授】演绎推理

1,建立模型(师):把行星绕太阳的椭圆运动简化为匀速圆周运动,如图:

2,引力推导(生):设太阳质量为m,行星质量为m,

行星绕太阳运行周期为t,轨道半径为r,如图所示,请根据圆周运动知识推导出太阳对行星的引力f?

3,凸现r3/t2(师):根据开普勒第三定律:r3/t2是常数k,请凸现出r3/t2?

4,得出引力与行星质量m和行星到太阳距离r的关系(师与生):太阳与行星之间的吸引力跟行星的质量成正比,与行星到太阳的距离的二次方成反比。写成f∝

5,递进推理:

(师)根据力的作用的相互性,既然太阳对行星有引力,那么行星对太阳必然也有引力;既然太阳对行星有引力f与行星质量m成正比、与距离r的二次方成反比,那么行星对太阳的引力也必然与太阳质量m成正比、与距离r的二次方成反比,即:

(师)根据牛顿第三定律有:f= f′

(师与生)所以应该有太阳与行星间的引力与太阳质量m和行星质量m乘积成正比,距离r的二次方成反比。即: f引∝

(师)写成等式:f引=g g 为比例常数

6,得出结论(师与生):太阳与行星间的引力与太阳质量m和行星质量m乘积成正比,距离r的二次方成反比。f引=g

活动5【讲授】历史上科学家对行星绕太阳运动原因的研究

1,开普勒认为行星绕太阳运动一定是受到了来自太阳的类似于磁力的作用.

2,笛卡儿认为行星运动是因为行星的周围有一种以太物质作用在行星上.

3,牛顿、胡克、哈雷认为:行星绕太阳运动是因为受到了太阳对它的引力的作用。

活动6【讲授】课堂结束语

我们本堂课对太阳对行星引力的探究正是踏着牛顿当年研究的足迹。然而,牛顿他并没有止步,他想:太阳对行星引力与地球对苹果的引力和地球对月球的引力是否是同一种力呢?正是他这种猜想与后来的深入研究产生了伟大的发现——万有引力定律。下节课我们将沿着牛顿的足迹去探究万有引力定律。

设计小结:本节课的教学设计,我通过推导太阳和行星间的引力这条明线,和遵循牛顿发现“万有引力定律的足迹”这条暗线一起来进行。我通过引入视频资料,激发学生的学习兴趣。把复杂的推导过程以问题形式呈现,难点分层突破,符合学生的认知规律,贴近学生实际知识水平。在整个学习过程中学生自己完成了太阳与行星间引力的推导,体会了物理模型的建立过程,万有引力推导的科学过程。使学习过程变成学生自我提高完善的过程。提高学生各方面的能力。

2.太阳与行星间的引力

课时设计 课堂实录

2.太阳与行星间的引力

1第一学时 教学活动 活动1【导入】 创设情境,引入新课

播放太阳系八大行星运动视频。

提出问题:根据开普勒定律,所有行星都绕太阳做椭圆运动。椭圆运动是变速运动,运动状态在不断改变。根据牛顿运动定律:改变运动状态必须有力;那么,行星都绕太阳做变速运动应该有力,这个力从哪里来?

活动2【讲授】分析与推理

这个应只能来自于太阳;

理由:

1,力是物体对物体的作用,这个物体只有太阳;

2,不直接接触的物体间也可以产生力,如:地球与空中的苹果之间;不接触的磁体之间等;

活动3【讲授】引力猜想

太阳对行星的引力与那些因素有关?

猜想:太阳对行星的引力f应该与行星到太阳距离r有关;历史上胡克、牛顿等科学家也是这样猜想的;

活动4【讲授】演绎推理

1,建立模型(师):把行星绕太阳的椭圆运动简化为匀速圆周运动,如图:

2,引力推导(生):设太阳质量为m,行星质量为m,

行星绕太阳运行周期为t,轨道半径为r,如图所示,请根据圆周运动知识推导出太阳对行星的引力f?

3,凸现r3/t2(师):根据开普勒第三定律:r3/t2是常数k,请凸现出r3/t2?

4,得出引力与行星质量m和行星到太阳距离r的关系(师与生):太阳与行星之间的吸引力跟行星的质量成正比,与行星到太阳的距离的二次方成反比。写成f∝

5,递进推理:

(师)根据力的作用的相互性,既然太阳对行星有引力,那么行星对太阳必然也有引力;既然太阳对行星有引力f与行星质量m成正比、与距离r的二次方成反比,那么行星对太阳的引力也必然与太阳质量m成正比、与距离r的二次方成反比,即:

(师)根据牛顿第三定律有:f= f′

(师与生)所以应该有太阳与行星间的引力与太阳质量m和行星质量m乘积成正比,距离r的二次方成反比。即: f引∝

(师)写成等式:f引=g g 为比例常数

6,得出结论(师与生):太阳与行星间的引力与太阳质量m和行星质量m乘积成正比,距离r的二次方成反比。f引=g

活动5【讲授】历史上科学家对行星绕太阳运动原因的研究

1,开普勒认为行星绕太阳运动一定是受到了来自太阳的类似于磁力的作用.

2,笛卡儿认为行星运动是因为行星的周围有一种以太物质作用在行星上.

3,牛顿、胡克、哈雷认为:行星绕太阳运动是因为受到了太阳对它的引力的作用。

活动6【讲授】课堂结束语

我们本堂课对太阳对行星引力的探究正是踏着牛顿当年研究的足迹。然而,牛顿他并没有止步,他想:太阳对行星引力与地球对苹果的引力和地球对月球的引力是否是同一种力呢?正是他这种猜想与后来的深入研究产生了伟大的发现——万有引力定律。下节课我们将沿着牛顿的足迹去探究万有引力定律。

设计小结:本节课的教学设计,我通过推导太阳和行星间的引力这条明线,和遵循牛顿发现“万有引力定律的足迹”这条暗线一起来进行。我通过引入视频资料,激发学生的学习兴趣。把复杂的推导过程以问题形式呈现,难点分层突破,符合学生的认知规律,贴近学生实际知识水平。在整个学习过程中学生自己完成了太阳与行星间引力的推导,体会了物理模型的建立过程,万有引力推导的科学过程。使学习过程变成学生自我提高完善的过程。提高学生各方面的能力。

关于物理试验员培训心得体会实用三

本学期我担任八年级三个班的物理教学工作,该班学生的学习能力差异很大,为了让每一个学生都能够进步,特做了培优辅差计划如下:

一、指导思想:

为提高三个班的物理学习成绩,全面提高全班学生学习的主动性和积极性,进一步发展智力、提高学习成绩,特制订培优辅差工作计划。

二、思想方面的培优补差:

1、做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。了解学生们的学习态度、学习习惯、学习方法等。从而根据学生的思想心态进行相应的辅导。

2、定期与班主任老师交流,进一步了解学生的家庭、生活、思想、课堂等各方面的情况。

三、有效培优补差措施:

利用课余时间和晚自习,对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。具体方法如下:

1、课上差生板演,中等生订正,优等生解决难题。

2、安排座位时坚持“好差同桌”结为学习对子。即“兵教兵”。

3、课堂练习分成三个层次:第一层“必做题”即基础题,第二层:“选做题”即中等题,第三层“思考题”即拓展题。满足不同层次学生的需要。课本教材后面的联系题一般为基础题,难度不大,但是对学习内容的巩固有基础作用,为第一层次;教学辅导材料上有很多习题,难度有适中的,也有较大的,可以作为第二层次和第三层次使用。

4、培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。培优补差尽可能“耗费最少的必要时间和必要精力”。备好学生、备好教材、备好练习,才能上好课,才能保证培优补差的效果。要精编习题、习题教学要有四度。习题设计(或选编习题)要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评要增加信息程度,围绕重点,增加强

度,引到学生高度注意,有利于学生学会解答;解答习题要有多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题训练要讲精度,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练要有多样化。

四、在培优补差中注意几点:

1、不歧视学习有困难的学生,不纵容优秀的学生,一视同仁。

2、根据优差生的实际情况制定学习方案,比如优秀生可以给他们一定难度的题目让他们进行练习,学困生则根据他们的程度给与相应的题目进行练习和讲解,已达到循序渐进的目的。

3、经常与班主任交流,相互了解学生在家与在校的一些情况,共同促进学生的作业情况,培养学习兴趣,树立对学习的信心。

4、对于学生的作业完成情况要及时地检查,并做出评价。5、不定期地进行所学知识的小测验,对所学知识进行抽测。

五、落实培优补差方案:

我们针对学生知识残缺不全,基本解题方法不熟悉的特点,在面向全体学生采取知识点逐一过关的基础上,主要采取六个分层落实教学常规,实现共同提高。

1、学生分层:以班为单位,根据学生现有知识、能力水平和潜力倾向将学生分为a,b,c三层。其中a层学生:成绩优秀,基础扎实,学习自觉,有能力独立完成作业,有严密的数学逻辑思维和综合解题能力。b层学生:成绩中等,上课能听懂,能独立完成基础知识题目,但综合能力欠缺,逻辑分析思维尚未成熟,主动性积极性较好。c层学生:基础不扎实。表现为:计算能力弱,领悟能力差,学习习惯不好,学习意志不坚定。根据自愿,学生可在层间流动,也可脚踏两层。

2、备课分层:备课是课堂教学的基础。因此,我们坚持通过集体备课来明确教学目标,设计教学内容,坚持在集体备课时,突出对培优补差的讨论和研究,经过分析学生的能力增长点、思维障碍点,对不同层次学生提出不同的目标要求。备课内容以学案和教案呈现出来。学案供学生使用,内容主要有:考纲要求,基础知识整合,重点热点探究,链接高考,总结归纳,课后练习五部分。其中基础知识整合,重点热点探究,课后练习都以培优补差为出发点设计不同的教学目标,由浅入深,梯度合理,可供不同层次学生选用。教案供教师使用。任课教师根据所教班级实际情况,围绕教学目标,编写教学设计,主要内容有:

教学内容、重点难点、课堂范例、探究点的设置、方法规律、作业布置、课后反思等。

3、授课分层:

分层授课的主要理念是:以学生为本,低起点,缓坡度,让不同层次学生都有思考和回答问题的机会,让各个学生在课堂中都能尝试成功。分层授课模式是:基础知识整合→尝试探究→分层点拨→归纳小结→布置作业。课堂教学中,我们交叉采用平行推进和分层推进授课。对于基本知识回顾、基本技能训练和课堂归纳小结,无论哪个层次学生都必须参与,同步进行;对于重点知识的延伸拓展,并把所学知识迁移到习题中时,不同层次学生进行不同层次的概念理解和不同要求的探究。

4、作业分层:对于作业,我们坚持做到:分层设计、统一要求、不同批改。(1)分层设计:可为c层学生设计基础题;b层学生除了做c层学生的基础题,还配以简单的例题变式练习;a层学生除完成b、c层学生布置的题目外,主要从思想方法和能力培养上设计具有综合性、开放性、讨论型。

(2)统一要求:平时,我们在学校分配的时间内要求学生按时作业,按时收缴,做到有练必交,有错必纠;做好训练,变学堂为战场,做到平时练习考试化,并要求学生建立错题档案,及时领悟内化、查漏补缺。

(3)不同批改:对于不同层次学生的作业采取不同的批改方式。对c层学生尽量采用面批,及时指导,做到日清周结,帮助他们提高;对a、b层学生的作业,我们采取初改或者轮改的方式,批改后,要求他们互相对照独立完善,鼓励他们自主钻研,力求更优。

5、辅导分层:我们利用学生自习课时间,分别对c层学生和a层学生在课堂中尚未解决的问题进行辅导,而且侧重点不同:对c层学生侧重于兴趣、信心、愿意学习等意识教育;对a层学生侧重于培养综合运用能力和解题方法技巧的指导。

关于物理试验员培训心得体会实用四

重力加速度的测定

精确测定银川地区的重力加速度

测量结果的相对不确定度不超过5%

初步确定有以下六种模型方案:

所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

重力加速度的计算公式推导如下:

取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知:

ncosα-mg=0 (1)

nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

所用仪器为:米尺、秒表、单摆.

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t

摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值.

在摆角很小时,摆动周期为:

通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。

四、采用模型六利用单摆法测量重力加速度

摘要:

重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。

伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。

应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。

实验器材:

单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线

实验原理:

单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。

f =p sinθ

f

θ

t=p cosθ

p = mg

l

图2-1 单摆原理图

摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。当摆角很小时(θ5°),圆弧可近似地看成直线,f也可近似地看作沿着这一直线。设摆长为l,小球位移为x,质量为m,则

sinθ=

f=psinθ=-mg =-m x (2-1)

由f=ma,可知a=- x

式中负号表示f与位移x方向相反。

单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a= =-ω2x

可得ω=

于是得单摆运动周期为:

t=2π/ω=2π (2-2)

t2= l (2-3)

或 g=4π2 (2-4)

利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。

由式(2-3)可知,t2和l之间具有线性关系, 为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。

试验条件及误差分析:

上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:

1. 单摆的摆动周期与摆角的关系,可通过测量θ5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的t与θ无关。

实际上,单摆的周期t随摆角θ增加而增加。根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:

t=t0[1+( )2sin2 +( )2sin2 +……]

式中t0为θ接近于0o时的周期,即t0=2π

2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

3.如果考虑空气的浮力,则周期应为:

式中t0是同一单摆在真空中的摆动周期,ρ空气是空气的密度,ρ摆锥 是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。

4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。