700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 双功能磁性荧光纳米复合[email protected]微球的制备方法与流程

双功能磁性荧光纳米复合[email protected]微球的制备方法与流程

时间:2023-12-31 09:39:01

相关推荐

双功能磁性荧光纳米复合[email protected]微球的制备方法与流程

本发明属于纳米材料制备领域,具体涉及一种双功能磁性荧光纳米复合[email protected]微球的制备方法。

背景技术:

磁性荧光双功能纳米材料是由超顺磁性纳米颗粒和量子点结合形成的荧光磁性复合纳米颗粒,这种双重功能生物纳米材料将磁性纳米粒子的磁学特性与具有生物标记功能的荧光特性有效地结合起来,使其兼具磁响应性、荧光可示踪性和表面功能性,在靶向药物载体、细胞分离和标识、磁共振成像以及生物传感器等众多领域具有广阔的应用前景,也为研究者开发新材料提供了设计思路和方向。

迄今为止,核壳型磁性荧光纳米复合材料的形成机理有化学键作用、库仑静电引力作用、吸附层媒介作用、过饱和度。常见的制备方法已有水/溶剂热法、层层组装法、溶胶-凝胶法、沉淀法、微乳液法等,在制备过程中也可能包括多种制备方法。mou等采用微乳液法将单分散的纳米fe3o4粒子作为核包裹在sio2壳层内([email protected]),同时又将绿色有机荧光染料分散在上述结构框架的孔隙中,该复合结构具有较好的超顺磁性,并可用于多种细胞的标记,但其稳定性较低。yang等用stober方法在fe3o4粒子表面形成sio2层得到[email protected]纳米粒子,然后将其作为模板,采用溶胶-凝胶法在表面包覆一层掺杂5%eu3+的lavo4合成纳米粒子[email protected]@lavo4:eu3+,但该反应物水解缩聚、生长团聚形成凝胶的过程比较缓慢,且后期需要对凝胶进行干燥、焙烧,去除有机成分,过程较为繁琐,合成周期长,成本高。wang等结合水热法与层层组装法制备了[email protected]@cdte纳米复合粒子,可作为化学传感器用于cu2+的检测,过程较为繁琐,适合的范围比较窄。

量子点化学稳定性较低,且具有潜在毒性,使其应用受到了局限。碳点(cds)是碳纳米材料家族中著名的成员之一,其尺寸小于10nm,由于其优良的结构而引起了相当大的关注。与常规的荧光染料和量子点相比,cds具有绿色合成、低毒、生物相容性好、稳定性好、水溶性好等优点,是生物成像、催化、生物传感和发光器件应用的良好替代品。

技术实现要素:

基于此本发明设计了一种双功能磁性荧光纳米复合[email protected]微球的制备方法,自下而上合成核-壳纳米复合材料[email protected],先用硅烷试剂(2-(氨乙基)丙基三甲基硅烷/3-氨丙基三乙氧基硅烷)修饰构建[email protected]核-壳结构,有效地降低磁性粒子对cds荧光的淬灭,随后以柠檬酸铵/柠檬酸为碳源,乙二胺/三乙烯四胺为氮源,一锅法制备出荧光强度高的磁性纳米复合材料。

本发明采用的技术方案是:双功能磁性荧光纳米复合[email protected]微球的制备方法,包括以下步骤:

[email protected]的制备:

将0.1~0.2gfe3o4分散在100~130ml乙醇溶液中,加入1.5~2.0ml氨水,超声15-30min,使fe3o4均匀分散在溶液中,随后搅拌过程中缓慢加入1~2ml正硅酸乙酯,反应45~60min后,滴加0.07~0.66ml硅烷试剂,室温下继续搅拌4~6h,合成[email protected];

[email protected]的制备:

称取[email protected]与碳源,它们的质量比为1:0.5~10,将其溶于5~10ml去离子水中,加入0.3~2ml氮源,超声10~15min后,160~180℃下,反应3~6h,磁力分离,用乙醇与去离子水多次洗涤,直至上清液中无荧光,60℃下真空干燥4~6h。

具体地,所述硅烷试剂选用2-(氨乙基)丙基三甲基硅烷和3-氨丙基三乙氧基硅烷的一种或多种。

具体地,所述碳源选用柠檬酸铵和柠檬酸的一种或多种。

具体地,所述氮源选用乙二胺和三乙烯四胺的一种或多种。

在上述方案中可以采用购买的fe3o4,也可以采用以下步骤制备fe3o4,具体为:称取0.2~0.3g的六水合氯化铁,加入10~15ml去离子水溶解,随后加入0.5~0.6g一水合柠檬酸,2~3ml乙二胺,0.3~0.4g氢氧化钠,搅拌均匀后,转入反应釜中,180~200℃反应8~12h。

为了使复合材料表面具有强而均匀的蓝色荧光,在所述[email protected]的制备步骤中加入naoh溶液,调节ph为11-13。

目前已对磁性荧光双功能材料有不少研究,但制备过程较为复杂,合成周期长,对设备及试剂要求较高,导致适合的范围比较窄。本发明的方法对反应物质的限制较少,反应条件温和,并通过透射电子显微镜(tem)、x射线能谱仪(eds)对该复合微球进行结构的表征以及性能的测试。结果表明,制备的复合材料磁强度高、分散性好、荧光性能优异,有望在环境治理、靶向治疗、荧光标记等领域得到广泛的应用。

本发明对比其余的荧光磁性材料的制备还具有以下优点,其一,本发明在制备碳点的过程中就直接将碳点与磁性材料进行了连接,不需要额外的连接步骤,优化了反应过程,且反应条件限制少,条件温和。其二,与量子点相比,碳点(cds)具有绿色合成、低毒、生物相容性好、稳定性好、水溶性好等优点,是生物成像、催化、生物传感和发光器件应用的良好替代品。

附图说明

图1为本发明制备的材料水溶性和分散性验证图;

图2为本发明制备的材料荧光验证图;

图3为本发明制备的材料的红外光谱图;

图4为透射电子显微镜(tem)结果图;

图5为x射线能谱仪(eds)结果图。

具体实施方式

实施例1

1、fe3o4的制备:

称取0.2g的六水合氯化铁(fecl3﹒6h2o),加入15ml去离子水溶解,随后加入0.5g一水合柠檬酸,3ml乙二胺,0.3g氢氧化钠。搅拌均匀后,转入50ml反应釜中,200℃反应12h。磁力分离黑色溶液并用乙醇以及去离子水分别清洗数次,去除残余反应物,60℃真空干燥6h。

2、[email protected]的制备:

将0.1gfe3o4分散在100ml乙醇溶液中(乙醇/水=1/4,v;v),加入1.5ml氨水,超声15min,使其均匀分散在溶液中,随后在机械搅拌下缓慢加入1ml正硅酸乙酯,反应45min后,滴加0.07ml2-(氨乙基)丙基三甲基硅烷,室温下继续搅拌4h,将合成的[email protected]纳米粒子磁力分离后,用乙醇与去离子水多次洗涤,直至上清液澄清无色,60℃下真空干燥4h。

3、[email protected]的制备:

称取0.1g的[email protected],50mg柠檬酸溶于10ml去离子水中,超声10min后,180℃下,反应3h。磁力分离,用乙醇与去离子水多次洗涤,直至上清液中无荧光,60℃下真空干燥4h。([email protected]:柠檬酸的质量比为2:1)

合成的复合材料表面无荧光,体系ph为4~6,弱酸性,酸度太低,使核壳结构被分解,产生棕黄色絮状物。

实施例2

1、fe3o4的制备:

称取0.3g的六水合氯化铁(fecl3﹒6h2o),加入10ml去离子水溶解,随后加入0.6g一水合柠檬酸,2ml乙二胺,0.4g氢氧化钠。搅拌均匀后,转入50ml反应釜中,200℃反应8h。磁力分离黑色溶液并用乙醇以及去离子水分别清洗数次,去除残余反应物,60℃真空干燥6h。

2、[email protected]的制备:

将0.1gfe3o4分散在100ml乙醇溶液中(乙醇/水=10/3,v;v),加入1.5ml氨水,超声15-30min,使其均匀分散在溶液中,随后在机械搅拌下缓慢加入1ml正硅酸乙酯,反应45-60min后,滴加0.07ml2-(氨乙基)丙基三甲基硅烷,室温下继续搅拌4-6h,将合成的[email protected]纳米粒子磁力分离后,用乙醇与水多次洗涤,直至上清液澄清无色,60℃下真空干燥4h。

3、[email protected]的制备:

称取0.1g的[email protected],50mg柠檬酸溶于5ml去离子水中,加入0.3ml乙二胺,超声10-15min后,160-180℃下,反应3-6h。磁力分离,用乙醇与去离子水多次洗涤,直至上清液中无荧光,60℃下真空干燥4-6h。([email protected]:柠檬酸的质量比为2:1)

加入乙二胺作为氮源,体系的时间延长至6h,体系的ph在8-9之间,合成的复合材料表面有较浅的蓝色荧光。

实施例3

1、fe3o4的制备:

称取0.2g的六水合氯化铁(fecl3﹒6h2o),加入15ml去离子水溶解,随后加入0.5g一水合柠檬酸,3ml乙二胺,0.3g氢氧化钠。搅拌均匀后,转入50ml反应釜中,200℃反应12h。磁力分离黑色溶液并用乙醇以及去离子水分别清洗数次,去除残余反应物,60℃真空干燥6h。

2、[email protected]的制备:

将0.16gfe3o4分散在130ml乙醇溶液中(乙醇/水=10/3,v;v),加入2ml氨水,超声30min,使其均匀分散在溶液中,随后在机械搅拌下缓慢加入2ml正硅酸乙酯,反应60min后,滴加0.66ml3-氨丙基三乙氧基硅烷,室温下继续搅拌6h,将合成的[email protected]纳米粒子磁力分离后,用乙醇与去离子水多次洗涤,直至上清液澄清无色,60℃下真空干燥4h。

3、[email protected]的制备:

称取30mg的[email protected],0.3g柠檬酸铵溶于10ml去离子水中,加入2ml三乙烯四胺,超声15min后,160℃下,反应6h。磁力分离,用乙醇与水多次洗涤,直至上清液中无荧光,60℃下真空干燥4h。([email protected]:柠檬酸铵的质量比为1:10)

将氮源换成三乙烯四胺,合成的复合材料表面仍有荧光,体系的ph在9-11之间。

实施例4

1、fe3o4的制备:

称取0.2g的六水合氯化铁(fecl3﹒6h2o),加入15ml去离子水溶解,随后加入0.5g一水合柠檬酸,3ml乙二胺,0.3g氢氧化钠。搅拌均匀后,转入50ml反应釜中,180℃反应12h。磁力分离黑色溶液并用乙醇以及去离子水分别清洗数次,去除残余反应物,60℃真空干燥6h。

2、[email protected]的制备:

将0.2gfe3o4分散在130ml乙醇溶液中(乙醇/水=10/3,v;v),加入2.0ml氨水,超声30min,使其均匀分散在溶液中,随后在机械搅拌下缓慢加入1.5ml正硅酸乙酯,反应45min后,滴加0.66ml2-(氨乙基)丙基三甲基硅烷,室温下继续搅拌6h,将合成的[email protected]纳米粒子磁力分离后,用乙醇与去离子水多次洗涤,直至上清液澄清无色,60℃下真空干燥4h。

3、[email protected]的制备:

称取30mg的[email protected],0.3g柠檬酸铵溶于10ml去离子水中,加入2ml三乙烯四胺,2mlnaoh,超声10min后,160℃下,反应6h。磁力分离,用乙醇与水多次洗涤,直至上清液中无荧光,60℃下真空干燥4h。([email protected]:柠檬酸铵的质量比为1:10)

在体系中加入氢氧化钠将体系ph调至11-13之间,发现复合材料表面的蓝色荧光更强更均匀。

由此可见,体系的ph对cds的连接以及材料包覆的荧光强弱有很大的影响。体系碱性越强,对合成磁性荧光纳米复合微球越有利。

下面对对本发明制备的材料进行性能分析(主要采用实施例4制备的)。

1、水溶性、分散性:

参见图1,材料能均匀分散在水溶液中,并能在2min内与水溶液磁力分离,磁性较强,振荡后又能重新分散在溶液中。

2、荧光

在日光灯下材料为黑色固体材料(图a),而在365nm紫外灯下,可看到黑色材料表面明显的较强的蓝色荧光(图b),说明材料表面成功包覆了cds。将分散过后的材料60℃真空干燥,发现其仍具有荧光,表明其荧光性能优异,在材料循环使用方面具有可行的潜力。

用荧光分光光度计测得材料的荧光激发发射光谱(图c),在最佳激发350nm波长下,得到的激发波长为449nm。

3、红外光谱图:

参见图3,红外谱图中577.11cm-1为fe-o键的振动峰,3475.54cm-1位置上归属于-nh2的特征吸收峰;在2360.73cm-1处有较强的-ch2-的伸缩振动;1097.87cm-1为si-o-si键伸缩振动峰;855.14cm-1为si-c键伸缩振动峰,新的特征峰1637.65cm-1为c=o键的特征峰,-ch2-的伸缩振动发生了蓝移的情况,由2360.73cm-1蓝移至2028.34cm-1,以上特征吸收峰表明cds已成功包覆在fe3o4上,成为双功能磁性荧光纳米复合材料。

4、透射电子显微镜(tem):

参见图4,由透射电子显微镜图tem图可看出a中fe3o4粒子呈球形,粒径在20-100nm分布。b图为明显的核壳结构,可看到fe3o4粒子表面边缘有薄薄的一层浅灰色区域低密度的包覆层,厚度为10nm左右,证实了[email protected]纳米复合纳米微球的结构。

5、x射线能谱仪(eds):

参见图5,x射线光谱(eds)显示了[email protected]@cds的fe、o、si、n元素的存在,其含量分别为10.03%、69.94%、12.78%、7.17%。

技术特征:

1.双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于,包括以下步骤:

[email protected]的制备:

将0.1~0.2gfe3o4分散在100~130ml乙醇溶液中,加入1.5~2ml氨水,超声15~30min,使fe3o4均匀分散在溶液中,随后搅拌过程中缓慢加入2ml正硅酸乙酯,反应45~60min后,滴加0.07~0.66ml2-(氨乙基)丙基三甲基硅烷或3-氨丙基三乙氧基硅烷,室温下继续搅拌4~6h,合成[email protected];

[email protected]的制备:

称取[email protected]与碳源,它们的质量比为1:0.5~10,将其溶于5~10ml去离子水中,加入0.3~2ml氮源,超声10~15min后,160~180℃下,反应3~6h,磁力分离,用乙醇与去离子水多次洗涤,直至上清液中无荧光,60℃下真空干燥4~6h。

2.根据权利要求1所述双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于:所述硅烷试剂选用2-(氨乙基)丙基三甲基硅烷和3-氨丙基三乙氧基硅烷的一种或多种。

3.根据权利要求1所述双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于:所述碳源选用柠檬酸铵和柠檬酸的一种或多种。

4.根据权利要求1所述双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于:所述氮源选用乙二胺和三乙烯四胺的一种或多种。

5.根据权利要求1-4任一项所述双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于:还包括制备fe3o4的步骤,具体为:称取0.2~0.3g的六水合氯化铁,加入10~15ml去离子水溶解,随后加入0.5~0.6g一水合柠檬酸,2~3ml乙二胺,0.3~0.4g氢氧化钠,搅拌均匀后,转入反应釜中,180~200℃反应8~12h。

6.根据权利要求1-4任一项所述双功能磁性荧光纳米复合[email protected]微球的制备方法,其特征在于:在所述[email protected]的制备步骤中加入naoh溶液,调节ph为11-13。

7.一种双功能磁性荧光纳米复合[email protected]微球,其特征在于,是采用如下方法制备的:

将0.1~0.2gfe3o4分散在100~130ml乙醇溶液中,加入1.5~2ml氨水,超声15~30min,使fe3o4均匀分散在溶液中,随后搅拌过程中缓慢加入1~2ml正硅酸乙酯,反应45~60min后,滴加0.07~0.66ml2-(氨乙基)丙基三甲基硅烷或3-氨丙基三乙氧基硅烷,室温下继续搅拌4~6h,合成[email protected];

称取[email protected]与柠檬酸铵或柠檬酸,它们的质量比为1:0.5~10,将其溶于5~10ml去离子水中,加入0.3~2ml乙二胺或三乙烯四胺,超声10~15min后,160~180℃下,反应3~6h,磁力分离,用乙醇与去离子水多次洗涤,直至上清液中无荧光,60~80℃下真空干燥4~6h。

8.根据权利要求7所述一种双功能磁性荧光纳米复合[email protected]微球,其特征在于:在[email protected]的制备步骤中加入naoh溶液,调节ph为11-13。

技术总结

本发明公开了一种双功能磁性荧光纳米复合[email protected]微球的制备方法,自下而上合成核‑壳纳米复合材料[email protected],先用硅烷试剂(2‑(氨乙基)丙基三甲基硅烷/3‑氨丙基三乙氧基硅烷)修饰构建[email protected]‑NH2核‑壳结构,有效地降低磁性粒子对CDs荧光的淬灭,随后以柠檬酸铵/柠檬酸为碳源,乙二胺/三乙烯四胺为氮源,一锅法制备出荧光强度高的磁性纳米复合材料。制备的复合材料磁强度高、分散性好、荧光性能优异,有望在环境治理、靶向治疗、荧光标记等领域得到广泛的应用。

技术研发人员:苏小东;冉琴;刘洁;成祝;刘恩余;邓星;徐羽靚;徐春丽

受保护的技术使用者:重庆科技学院

技术研发日:.11.05

技术公布日:.02.11

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。