700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 图像增强之拉普拉斯锐化---高斯一阶导二阶导数

图像增强之拉普拉斯锐化---高斯一阶导二阶导数

时间:2022-09-10 08:25:59

相关推荐

图像增强之拉普拉斯锐化---高斯一阶导二阶导数

图像处理之高斯一阶及二阶导数计算

图像的一阶与二阶导数计算在图像特征提取与边缘提取中十分重要。一阶与二阶导数的

作用,通常情况下:

一阶导数可以反应出图像灰度梯度的变化情况

二阶导数可以提取出图像的细节同时双响应图像梯度变化情况

常见的算子有Robot, Sobel算子,二阶常见多数为拉普拉斯算子,如图所示:

对于一个1D的有限集合数据f(x) = {1…N}, 假设dx的间隔为1则一阶导数计算公式如下:

Df(x) = f(x+1) – f(x-1) 二阶导数的计算公式为:df(x)= f(x+1) + f(x-1) – 2f(x);

稍微难一点的则是基于高斯的一阶导数与二阶导数求取,首先看一下高斯的1D与2D的

公式。一维高斯对应的X阶导数公式:

二维高斯对应的导数公式:

二:算法实现

1.高斯采样,基于间隔1计算,计算mask窗口计算,这样就跟普通的卷积计算差不多

2.设置sigma的值,本例默认为10,首先计算高斯窗口函数,默认为3 * 3

3.根据2的结果,计算高斯导数窗口值

4.卷积计算像素中心点值。

注意点:计算高斯函数一定要以零为中心点, 如果窗口函数大小为3,则表达为-1, 0, 1

三:程序实现关键点

1.归一化处理,由于高斯计算出来的窗口值非常的小,必须实现归一化处理。

2.亮度提升,对X,Y的梯度计算结果进行了亮度提升,目的是让大家看得更清楚。

3.支持一阶与二阶单一方向X,Y偏导数计算

四:运行效果:

高斯一阶导数X方向效果

高斯一阶导数Y方向效果

五:算法全部源代码:

[java]view plaincopy

/*

* @author: gloomyfish

* @date: -11-17

*

* Title - Gaussian fist order derivative and second derivative filter

*/

package com.gloomyfish.image.harris.corner;

import java.awt.image.BufferedImage;

import com.gloomyfish.filter.study.AbstractBufferedImageOp;

public class GaussianDerivativeFilter extends AbstractBufferedImageOp {

public final static int X_DIRECTION = 0;

public final static int Y_DIRECTION = 16;

public final static int XY_DIRECTION = 2;

public final static int XX_DIRECTION = 4;

public final static int YY_DIRECTION = 8;

// private attribute and settings

private int DIRECTION_TYPE = 0;

private int GAUSSIAN_WIN_SIZE = 1; // N*2 + 1

private double sigma = 10; // default

public GaussianDerivativeFilter()

{

System.out.println("高斯一阶及多阶导数滤镜");

}

public int getGaussianWinSize() {

return GAUSSIAN_WIN_SIZE;

}

public void setGaussianWinSize(int gAUSSIAN_WIN_SIZE) {

GAUSSIAN_WIN_SIZE = gAUSSIAN_WIN_SIZE;

}

public int getDirectionType() {

return DIRECTION_TYPE;

}

public void setDirectionType(int dIRECTION_TYPE) {

DIRECTION_TYPE = dIRECTION_TYPE;

}

@Override

public BufferedImage filter(BufferedImage src, BufferedImage dest) {

int width = src.getWidth();

int height = src.getHeight();

if ( dest == null )

dest = createCompatibleDestImage( src, null );

int[] inPixels = new int[width*height];

int[] outPixels = new int[width*height];

getRGB( src, 0, 0, width, height, inPixels );

int index = 0, index2 = 0;

double xred = 0, xgreen = 0, xblue = 0;

// double yred = 0, ygreen = 0, yblue = 0;

int newRow, newCol;

double[][] winDeviationData = getDirectionData();

for(int row=0; row<height; row++) {

int ta = 255, tr = 0, tg = 0, tb = 0;

for(int col=0; col<width; col++) {

index = row * width + col;

for(int subrow = -GAUSSIAN_WIN_SIZE; subrow <= GAUSSIAN_WIN_SIZE; subrow++) {

for(int subcol = -GAUSSIAN_WIN_SIZE; subcol <= GAUSSIAN_WIN_SIZE; subcol++) {

newRow = row + subrow;

newCol = col + subcol;

if(newRow < 0 || newRow >= height) {

newRow = row;

}

if(newCol < 0 || newCol >= width) {

newCol = col;

}

index2 = newRow * width + newCol;

tr = (inPixels[index2] >> 16) & 0xff;

tg = (inPixels[index2] >> 8) & 0xff;

tb = inPixels[index2] & 0xff;

xred += (winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tr);

xgreen +=(winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tg);

xblue +=(winDeviationData[subrow + GAUSSIAN_WIN_SIZE][subcol + GAUSSIAN_WIN_SIZE] * tb);

}

}

outPixels[index] = (ta << 24) | (clamp((int)xred) << 16) | (clamp((int)xgreen) << 8) | clamp((int)xblue);

// clean up values for next pixel

newRow = newCol = 0;

xred = xgreen = xblue = 0;

// yred = ygreen = yblue = 0;

}

}

setRGB( dest, 0, 0, width, height, outPixels );

return dest;

}

private double[][] getDirectionData()

{

double[][] winDeviationData = null;

if(DIRECTION_TYPE == X_DIRECTION)

{

winDeviationData = this.getXDirectionDeviation();

}

else if(DIRECTION_TYPE == Y_DIRECTION)

{

winDeviationData = this.getYDirectionDeviation();

}

else if(DIRECTION_TYPE == XY_DIRECTION)

{

winDeviationData = this.getXYDirectionDeviation();

}

else if(DIRECTION_TYPE == XX_DIRECTION)

{

winDeviationData = this.getXXDirectionDeviation();

}

else if(DIRECTION_TYPE == YY_DIRECTION)

{

winDeviationData = this.getYYDirectionDeviation();

}

return winDeviationData;

}

public int clamp(int value) {

// trick, just improve the lightness otherwise image is too darker...

if(DIRECTION_TYPE == X_DIRECTION || DIRECTION_TYPE == Y_DIRECTION)

{

value = value * 10 + 50;

}

return value < 0 ? 0 : (value > 255 ? 255 : value);

}

// centered on zero and with Gaussian standard deviation

// parameter : sigma

public double[][] get2DGaussianData()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] winData = new double[size][size];

double sigma2 = this.sigma * sigma;

for(int i=-GAUSSIAN_WIN_SIZE; i<=GAUSSIAN_WIN_SIZE; i++)

{

for(int j=-GAUSSIAN_WIN_SIZE; j<=GAUSSIAN_WIN_SIZE; j++)

{

double r = i*1 + j*j;

double sum = -(r/(2*sigma2));

winData[i + GAUSSIAN_WIN_SIZE][j + GAUSSIAN_WIN_SIZE] = Math.exp(sum);

}

}

return winData;

}

public double[][] getXDirectionDeviation()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] data = get2DGaussianData();

double[][] xDeviation = new double[size][size];

double sigma2 = this.sigma * sigma;

for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)

{

double c = -(x/sigma2);

for(int i=0; i<size; i++)

{

xDeviation[i][x + GAUSSIAN_WIN_SIZE] = c * data[i][x + GAUSSIAN_WIN_SIZE];

}

}

return xDeviation;

}

public double[][] getYDirectionDeviation()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] data = get2DGaussianData();

double[][] yDeviation = new double[size][size];

double sigma2 = this.sigma * sigma;

for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)

{

double c = -(y/sigma2);

for(int i=0; i<size; i++)

{

yDeviation[y + GAUSSIAN_WIN_SIZE][i] = c * data[y + GAUSSIAN_WIN_SIZE][i];

}

}

return yDeviation;

}

/***

*

* @return

*/

public double[][] getXYDirectionDeviation()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] data = get2DGaussianData();

double[][] xyDeviation = new double[size][size];

double sigma2 = sigma * sigma;

double sigma4 = sigma2 * sigma2;

// TODO:zhigang

for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)

{

for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)

{

double c = -((x*y)/sigma4);

xyDeviation[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] = c * data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE];

}

}

return normalizeData(xyDeviation);

}

private double[][] normalizeData(double[][] data)

{

// normalization the data

double min = data[0][0];

for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)

{

for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)

{

if(min > data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE])

{

min = data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE];

}

}

}

for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)

{

for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)

{

data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] = data[x + GAUSSIAN_WIN_SIZE][y + GAUSSIAN_WIN_SIZE] /min;

}

}

return data;

}

public double[][] getXXDirectionDeviation()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] data = get2DGaussianData();

double[][] xxDeviation = new double[size][size];

double sigma2 = this.sigma * sigma;

double sigma4 = sigma2 * sigma2;

for(int x=-GAUSSIAN_WIN_SIZE; x<=GAUSSIAN_WIN_SIZE; x++)

{

double c = -((x - sigma2)/sigma4);

for(int i=0; i<size; i++)

{

xxDeviation[i][x + GAUSSIAN_WIN_SIZE] = c * data[i][x + GAUSSIAN_WIN_SIZE];

}

}

return xxDeviation;

}

public double[][] getYYDirectionDeviation()

{

int size = GAUSSIAN_WIN_SIZE * 2 + 1;

double[][] data = get2DGaussianData();

double[][] yyDeviation = new double[size][size];

double sigma2 = this.sigma * sigma;

double sigma4 = sigma2 * sigma2;

for(int y=-GAUSSIAN_WIN_SIZE; y<=GAUSSIAN_WIN_SIZE; y++)

{

double c = -((y - sigma2)/sigma4);

for(int i=0; i<size; i++)

{

yyDeviation[y + GAUSSIAN_WIN_SIZE][i] = c * data[y + GAUSSIAN_WIN_SIZE][i];

}

}

return yyDeviation;

}

}

/jia20003/article/details/16369143

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。