700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 深度学习框架Keras介绍及实战

深度学习框架Keras介绍及实战

时间:2019-07-25 19:48:50

相关推荐

深度学习框架Keras介绍及实战

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

本文以Kaggle上的项目:IMDB影评情感分析为例,学习如何用Keras搭建一个神经网络,处理实际问题.阅读本文需要对神经网络有基础的了解.

文章分为两个部分:

Keras中的一些基本概念.Api用法.我会给出一些简单的使用样例,或是给出相关知识链接.IMDB影评情感分析实战.用到的都是第一部分中讲到的知识点.

Model

Dense 全连接层

keras.layers.core.Dense(units, activation=None, use_bias=True, k

ernel_initializer='glorot_uniform', bias_initializer='zeros', ke

rnel_regularizer=None, bias_regularizer=None, activity_regulariz

er=None, kernel_constraint=None, bias_constraint=None)

# as first layer in a sequential model:# as first layer in a sequential model:model = Sequential()model.add(Dense(32, input_shape=(16,)))# now the model will take as input arrays of shape (*, 16)# and output arrays of shape (*, 32)# after the first layer, you don't need to specify# the size of the input anymore:model.add(Dense(32))

嵌入层 Embedding

keras.layers.embeddings.Embedding(input_dim, output_dim, embeddi

ngs_initializer='uniform', embeddings_regularizer=None, activity

_regularizer=None, embeddings_constraint=None, mask_zero=False,

input_length=None)

有兴趣的看这个链接/use-word-embedding-layers-deep-learning-keras/

其实就是word to vector。 这一层的作用就是得到用词向量表示的文本.

input_dim: 词表的大小.即不同的词的总个数.output_dim:想要把词转换成多少维的向量.input_length: 每一句的词的个数

比如如下代表:我们输入一个M*50的矩阵,这个矩阵中不同的词的个数为200,我们想把每个词转换为32维向量. 返回的是一个(M,50,32)的张量.

一个句子50个词,每个词是32维向量,共M个句子. 所以是e.shape=(M,50,32)

e = Embedding(200, 32, input_length=50)

LSTM层.

LSTM是循环神经网络的一种特殊情况./tutorial/lstm.html

简单来说,我们此前说过的神经网络,包括CNN,都是单向的,没有考虑序列关系,但是某个词的意义与其上下文是有关的,比如"我用着小米手机,吃着小米粥",两个小米肯定不是一个意思.在做语义分析的时候,需要考虑上下文. 循环神经网络RNN就是干这个事情的.或者说"这部电影质量很高,但是我不喜欢".这个句子里既有正面评价,又有负面评价,参考上下文的LSTM会识别出"但是"后面的才是我们想要重点表达的.

keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_

activation='hard_sigmoid', use_bias=True, kernel_initializer='gl

orot_uniform', recurrent_initializer='orthogonal', bias_initiali

zer='zeros', unit_forget_bias=True, kernel_regularizer=None, rec

urrent_regularizer=None, bias_regularizer=None, activity_regular

izer=None, kernel_constraint=None, recurrent_constraint=None, bi

as_constraint=None, dropout=0.0, recurrent_dropout=0.0)

池化层

keras.layers.pooling.GlobalMaxPooling1D() #对时间信号的全局最大池化 /questions/43728235/what-is-the-difference-between-keras-maxpooling1d-and-globalmaxpooling1d-functi input:形如( samples, steps, features) 的3D张量output:形如(samples, features)的2D张量keras.layers.pooling.MaxPooling1D(pool_size=2, strides=None, pad

ding='valid')keras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None

, padding='valid', data_format=None)keras.layers.pooling.MaxPooling3D(pool_size=(2, 2, 2), strides=N

one, padding='valid', data_format=None)....

数据预处理

文本预处理

keras.preprocessing.text.text_to_word_sequence(text,

filters=base_filter(), lower=True, split=" ")keras.preprocessing.text.one_hot(text, n,

filters=base_filter(), lower=True, split=" ")keras.preprocessing.text.Tokenizer(num_words=None, filters=base_

filter(),

lower=True, split=" ")

Tokenizer是一个用于向量化文本, 或将文本转换为序列( 即单词在字典中的下标构

成的列表, 从1算起) 的类。 num_words: None或整数, 处理的最大单词数量。 若被设置为整数, 则分词器

将被限制为处理数据集中最常见的 num_words 个单词不管num_words是几,fit_on_texts以后词典都是一样的,全部的词都有对应的index.只是在做texts_to_sequences时所得结果不同.会取最常出现的(num_words - 1)个词对应的index来代表句子.注意num_words不同时,准换后X_t的不同. 只取词典中出现最多的num_words - 1代表句子.如果一个句子中出现特别生僻的词,就会被过滤掉.比如一个句子="x y z".y,z不在词典中最常出现的top num_words-1的话,最后这个句子的向量形式则为[x_index_in_dic]

t1="i love that girl"t2='i hate u'texts=[t1,t2]tokenizer = Tokenizer(num_words=None)tokenizer.fit_on_texts(texts) #得到词典 每个词对应一个index.print( tokenizer.word_counts) #OrderedDict([('i', 2), ('love', 1), ('that', 1), ('girl', 1), ('hate', 1), ('u', 1)])print( tokenizer.word_index) #{'i': 1, 'love': 2, 'that': 3, 'girl': 4, 'hate': 5, 'u': 6}print( tokenizer.word_docs) #{'i': 2, 'love': 1, 'that': 1, 'girl': 1, 'u': 1, 'hate': 1})print( tokenizer.index_docs) #{1: 2, 2: 1, 3: 1, 4: 1, 6: 1, 5: 1}tokennized_texts = tokenizer.texts_to_sequences(texts) print(tokennized_texts) #[[1, 2, 3, 4], [1, 5, 6]] 每个词由其index表示X_t = pad_sequences(tokennized_texts, maxlen=None) #转换为2d array 即矩阵形式. 每个文本的词的个数均为maxlen. 不存在的词用0表示.print(X_t)#[[1 2 3 4][0 1 5 6]]

序列预处理

keras.preprocessing.sequence.pad_sequences(sequences, maxlen=None

, dtype='int32',

padding='pre', truncating='pre', value=0.)

返回一个2阶张量keras.preprocessing.sequence.skipgrams(sequence, vocabulary_size

,

window_size=4, negative_samples=1., shuffle=True,

categorical=False, sampling_table=None)keras.preprocessing.sequence.make_sampling_table(size, sampling_

factor=1e-5)

keras实战:IMDB影评情感分析

数据集介绍

labeledTrainData.tsv/imdb_master.csv 影评数据集 已经标注对电影是正面/负面评价testData.tsv 测试集 需要预测评论是正面/负面

主要步骤

数据读取数据清洗 主要包括去除停词,去除html tag,去除标点符号模型构建 嵌入层:完成词到向量的转换LSTM池化层:完成重要特征抽取全连接层:分类

数据加载

import pandas as pdimport matplotlib.pyplot as pltimport numpy as npdf_train = pd.read_csv("./dataset/word2vec-nlp-tutorial/labeledTrainData.tsv", header=0, delimiter="\t", quoting=3)df_train1=pd.read_csv("./dataset/imdb-review-dataset/imdb_master.csv",encoding="latin-1")df_train1=df_train1.drop(["type",'file'],axis=1)df_train1.rename(columns={'label':'sentiment','Unnamed: 0':'id','review':'review'}, inplace=True)df_train1 = df_train1[df_train1.sentiment != 'unsup']df_train1['sentiment'] = df_train1['sentiment'].map({'pos': 1, 'neg': 0})new_train=pd.concat([df_train,df_train1])

数据清洗

用bs4处理html数据

过滤出单词去除停用词

import refrom bs4 import BeautifulSoupfrom nltk.corpus import stopwordsdef review_to_words( raw_review ):review_text = BeautifulSoup(raw_review, 'lxml').get_text() letters_only = re.sub("[^a-zA-Z]", " ", review_text) words = letters_only.lower().split() stops = set(stopwords.words("english")) meaningful_words = [w for w in words if not w in stops] return( " ".join( meaningful_words )) new_train['review']=new_train['review'].apply(review_to_words)df_test["review"]=df_test["review"].apply(review_to_words)

Keras搭建网络

文本转换为矩阵

- Tokenizer作用于list(sentence)得到词典.将词用词在词典中的Index做替换,得到数字矩阵

- pad_sequences做补0. 保证矩阵每一行数目相等. 即每个句子有相同数量的词.

list_classes = ["sentiment"]y = new_train[list_classes].valuesprint(y.shape)list_sentences_train = new_train["review"]list_sentences_test = df_test["review"]max_features = 6000tokenizer = Tokenizer(num_words=max_features)tokenizer.fit_on_texts(list(list_sentences_train))list_tokenized_train = tokenizer.texts_to_sequences(list_sentences_train)list_tokenized_test = tokenizer.texts_to_sequences(list_sentences_test)print(len(tokenizer.word_index))totalNumWords = [len(one_comment) for one_comment in list_tokenized_train]print(max(totalNumWords),sum(totalNumWords) / len(totalNumWords))maxlen = 400X_t = pad_sequences(list_tokenized_train, maxlen=maxlen)X_te = pad_sequences(list_tokenized_test, maxlen=maxlen)

模型构建

词转向量

inp = Input(shape=(maxlen, ))print(inp.shape) # (?, 400) #每个句子400个词embed_size = 128 #每个词转换成128维的向量x = Embedding(max_features, embed_size)(inp)print(x.shape) #(?, 400, 128)

LSTM 60个神经元GlobalMaxPool1D 相当于抽取出最重要的神经元输出DropOut 丢弃部分输出 引入正则化,防止过拟合Dense 全连接层模型编译时指定损失函数,优化器,模型效果评测标准

x = LSTM(60, return_sequences=True,name='lstm_layer')(x)print(x.shape)x = GlobalMaxPool1D()(x)print(x.shape)x = Dropout(0.1)(x)print(x.shape)x = Dense(50, activation="relu")(x)print(x.shape)x = Dropout(0.1)(x)print(x.shape)x = Dense(1, activation="sigmoid")(x)print(x.shape)model = Model(inputs=inp, outputs=x)pile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

模型训练

batch_size = 32epochs = 2print(X_t.shape,y.shape)model.fit(X_t,y, batch_size=batch_size, epochs=epochs, validation_split=0.2)

使用模型预测

prediction = model.predict(X_te)y_pred = (prediction > 0.5)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。