700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 深度学习之生成对抗网络(3)DCGAN实战

深度学习之生成对抗网络(3)DCGAN实战

时间:2019-02-11 00:30:04

相关推荐

深度学习之生成对抗网络(3)DCGAN实战

深度学习之生成对抗网络(3)DCGAN实战

1. 动漫图片数据集2. 生成器3. 判别器4. 训练与可视化判别网络生成网络网络训练 5. 完整代码datasetGANGAN_train

 本节我们来完成一个二次元动漫头像图片生成实战,参考DCGAN的网络结构,其中判别器D利用普通卷积层实现,生成器G利用转置卷积层实现,其网络结构如下图所示:

DCGAN网络结构

1. 动漫图片数据集

 这里使用的是一组二次元动漫头像数据集[1][2],共51223张图片,无标注信息,图片主体已裁剪、对齐并统一缩放到96×96大小,部分样片如下图所示:

动漫头像图片数据集

[1] 数据集整理自:/chenyuntc/pytorch-book

[2] 数据集下载参考:/p/351083489

 对于自定义的数据集,需要自行完成数据的加载和预处理工作,我们这里聚焦在GAN算法本身,后续自定义数据集一章会详细介绍如何加载自己的数据集,这里直接通过预编写好的make_anime_dataset函数返回已经处理好的数据集对象。代码如下:

from Chapter13.dataset import make_anime_datasetfrom tensorflow import kerasimport sslssl._create_default_https_context = ssl._create_unverified_contextbatch_size = 64 # batch size# 数据集路径img_path = glob.glob(r'/Users/XXX/Documents/faces_test/*.jpg')print('images num:', len(img_path))# 构建数据集对象,返回数据集Dataset类和图片大小dataset, img_shape, _ = make_anime_dataset(img_path, batch_size, resize=64)print(dataset, img_shape)

其中dataset对象就是tf.data.Dataset类实例,已经完成了随机打散、预处理和批量化等操作,img_shape是预处理后的图片大小。运行结果如下所示:

<PrefetchDataset shapes: (64, 64, 64, 3), types: tf.float32> (64, 64, 3)

2. 生成器

 生成网络G由5个转置卷积层单元堆叠而成,实现特征图高宽的层层放大,特征图通道数的层层减少。首先将长度为100的隐藏向量 z \boldsymbol z z通过Reshape操作调整为 [ b , 1 , 1 , 100 ] [b,1,1,100] [b,1,1,100]的4维张量,并依序通过卷积层,放大高宽维度,减少通道数维度,最后得到高宽为64,通道数为3的彩色图片。每个卷积层中间插入BN层来提高训练稳定性,卷积层选择不使用偏置向量。生成器的类代码实现如下:

class Generator(keras.Model):# 生成器网络def __init__(self):super(Generator, self).__init__()filter = 64# 转置卷积层1,输出channel为filter*8,核大小4,步长1,不使用padding,不使用偏置self.conv1 = layers.Conv2DTranspose(filter*8, 4, 1, 'valid', use_bias=False)self.bn1 = layers.BatchNormalization()# 转置卷积层2self.conv2 = layers.Conv2DTranspose(filter*4, 4, 2, 'same', use_bias=False)self.bn2 = layers.BatchNormalization()# 转置卷积层3self.conv3 = layers.Conv2DTranspose(filter*2, 4, 2, 'same', use_bias=False)self.bn3 = layers.BatchNormalization()# 转置卷积层4self.conv4 = layers.Conv2DTranspose(filter*1, 4, 2, 'same', use_bias=False)self.bn4 = layers.BatchNormalization()# 转置卷积层5self.conv5 = layers.Conv2DTranspose(3, 4, 2, 'same', use_bias=False)

 生成网络G的前向传播过程实现如下:

def call(self, inputs, training=None):x = inputs # [z, 100]# Reshape乘4D张量,方便后续转置卷积运算:(b, 1, 1, 100)x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))x = tf.nn.relu(x) # 激活函数# 转置卷积-BN-激活函数:(b, 4, 4, 512)x = tf.nn.relu(self.bn1(self.conv1(x), training=training))# 转置卷积-BN-激活函数:(b, 8, 8, 256)x = tf.nn.relu(self.bn2(self.conv2(x), training=training))# 转置卷积-BN-激活函数:(b, 16, 16, 128)x = tf.nn.relu(self.bn3(self.conv3(x), training=training))# 转置卷积-BN-激活函数:(b, 32, 32, 64)x = tf.nn.relu(self.bn4(self.conv4(x), training=training))# 转置卷积-激活函数:(b, 64, 64, 3)x = self.conv5(x)x = tf.tanh(x) # 输出x范围-1~1,与预处理一致return x

生成网络的输出大小为 [ b , 64 , 64 , 3 ] [b,64,64,3] [b,64,64,3]的图片张量,数值范围为 − 1 ∼ 1 -1\sim1 −1∼1。

3. 判别器

 判别网络D与普通的分类网络相同,接受大小为 [ b , 64 , 64 , 3 ] [b,64,64,3] [b,64,64,3]的图片张量,连续通过5个卷积层实现特征的层层提取,卷积层最终输出大小为 [ b , 2 , 2 , 1024 ] [b,2,2,1024] [b,2,2,1024],再通过池化层GlobalAveragePooling2D将特征大小转换为 [ b , 1024 ] [b,1024] [b,1024],最后通过一个全连接层获得二分类任务的概率。判别网络D类的代码实现如下:

class Discriminator(keras.Model):# 判别器def __init__(self):super(Discriminator, self).__init__()filter = 64# 卷积层1self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_bias=False)self.bn1 = layers.BatchNormalization()# 卷积层2self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid', use_bias=False)self.bn2 = layers.BatchNormalization()# 卷积层3self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid', use_bias=False)self.bn3 = layers.BatchNormalization()# 卷积层4self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid', use_bias=False)self.bn4 = layers.BatchNormalization()# 卷积层5self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid', use_bias=False)self.bn5 = layers.BatchNormalization()# 全局池化层self.pool = layers.GlobalAveragePooling2D()# 特征打平self.flatten = layers.Flatten()# 二分类全连接层self.fc = layers.Dense(1)

判别器D的前向计算过程实现如下:

def call(self, inputs, training=None):# 卷积-BN-激活函数:(4, 31, 31, 64)x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs), training=training))# 卷积-BN-激活函数:(4, 14, 14, 128)x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))# 卷积-BN-激活函数:(4, 6, 6, 256)x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))# 卷积-BN-激活函数:(4, 4, 4, 512)x = tf.nn.leaky_relu(self.bn4(self.conv4(x), training=training))# 卷积-BN-激活函数:(4, 2, 2, 1024)x = tf.nn.leaky_relu(self.bn5(self.conv5(x), training=training))# 卷积-BN-激活函数:(4, 1024)x = self.pool(x)# 打平x = self.flatten(x)# 输出,[b, 1024] => [b, 1]logits = self.fc(x)return logits

判别器的输出大小为 [ b , 1 ] [b,1] [b,1],类内部没有使用Sigmoid激活函数,通过Sigmoid激活函数后可获得 b b b个样本属于真实样本的概率。

4. 训练与可视化

判别网络

 根据:

min ϕ max ϕ L ( D , G ) = E x r ∼ p r ( ⋅ ) log ⁡ D θ ( x r ) + E x f ∼ p g ( ⋅ ) log ⁡ ( 1 − D θ ( x f ) ) = E x ∼ p r ( ⋅ ) log ⁡ D θ ( x ) + E z ∼ p z ( ⋅ ) log ⁡ ( 1 − D θ ( G ϕ ( z ) ) ) \begin{aligned}\underset{ϕ}{\text{min}} \ \underset{ϕ}{\text{max}}\mathcal L(\text{D},\text{G})&=\mathbb E_{\boldsymbol x_r\sim p_r (\cdot) } \text{log}⁡D_θ (\boldsymbol x_r )+\mathbb E_{\boldsymbol x_f\sim p_g (\cdot) } \text{log}⁡(1-D_θ (\boldsymbol x_f ))\\ &=\mathbb E_{\boldsymbol x\sim p_r (\cdot) } \text{log}⁡D_θ (\boldsymbol x)+\mathbb E_{\boldsymbol z\sim p_z (\cdot)} \text{log}⁡(1-D_θ (G_ϕ (\boldsymbol z)))\end{aligned} ϕmin​ϕmax​L(D,G)​=Exr​∼pr​(⋅)​log⁡Dθ​(xr​)+Exf​∼pg​(⋅)​log⁡(1−Dθ​(xf​))=Ex∼pr​(⋅)​log⁡Dθ​(x)+Ez∼pz​(⋅)​log⁡(1−Dθ​(Gϕ​(z)))​

判别网络的训练目标是最大化 L ( D , G ) \mathcal L(\text{D},\text{G}) L(D,G)函数,使得真实样本预测为真的概率接近于1,生成样本预测为真的概率接近于0。我们将判别器的误差函数实现在d_loss_fn函数中,将所有真实样本标注为1,所有生成样本标注为0,并通过最小化对应的交叉熵损失函数来实现最大化 L ( D , G ) \mathcal L(\text{D},\text{G}) L(D,G)函数。d_loss_fn函数实现如下:

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):# 计算判别器的误差函数# 采样生成图片fake_image = generator(batch_z, is_training)# 判定生成图片d_fake_logits = discriminator(fake_image, is_training)# 判定真实图片d_real_logits = discriminator(batch_x, is_training)# 真实图片与1之间的误差d_loss_real = celoss_ones(d_real_logits)# 生成图片与0之间的误差d_loss_fake = celoss_zeros(d_fake_logits)# 合并误差loss = d_loss_fake + d_loss_realreturn loss

其中celoss_ones函数计算当前预测概率与标签1之间的交叉熵损失,代码如下:

def celoss_ones(logits):# 计算属于与标签为1的交叉熵y = tf.ones_like(logits)loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)return tf.reduce_mean(loss)

celoss_zeros函数计算当前预测概率与标签0之间的交叉熵损失,代码如下:

def celoss_zeros(logits):# 计算属于与便签为0的交叉熵y = tf.zeros_like(logits)loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)return tf.reduce_mean(loss)

生成网络

 生成网络的训练目标是最小化 L ( D , G ) \mathcal L(\text{D},\text{G}) L(D,G)目标函数,由于真实样本与生成器无关,因此误差函数只需要考虑最小化 E z ∼ p z ( ⋅ ) log ⁡ ( 1 − D θ ( G ϕ ( z ) ) ) \mathbb E_{\boldsymbol z\sim p_z (\cdot)} \text{log}⁡(1-D_θ (G_ϕ (\boldsymbol z))) Ez∼pz​(⋅)​log⁡(1−Dθ​(Gϕ​(z)))项即可。可以通过将生成的样本标注为1,最小化此时的交叉熵误差。需要注意的是,在反向传播误差的过程中,判别器也参与了计算图的构建,但是此阶段只需要更新生成器网络参数,而不更新判别器的网络参数。生成器的误差函数代码如下:

def g_loss_fn(generator, discriminator, batch_z, is_training):# 采样生成图片fake_image = generator(batch_z, is_training)# 在训练生成网络时,需要迫使生成图片判定为真d_fake_logits = discriminator(fake_image, is_training)# 计算生成图片与1之间的误差loss = celoss_ones(d_fake_logits)return loss

网络训练

 在每个Epoch,首先从先验分布 p z ( ⋅ ) p_z (\cdot) pz​(⋅)中随机采样隐藏向量,从真实数据集中随机采样真实图片,通过生成器和判别器计算判别器网络的损失,并优化判别器网络参数 θ θ θ。在训练生成器时,需要借助于判别器来计算误差,但是只计算生成器的梯度信息并更新 ϕ ϕ ϕ。这里设定判别器训练 k = 5 k=5 k=5后,生成器训练一次。

 首先创建生成网络和判别网络,并分别创建对应的优化器。代码如下:

generator = Generator() # 创建生成器generator.build(input_shape=(4, z_dim))discriminator = Discriminator() # 创建判别器discriminator.build(input_shape=(4, 64, 64, 3))# 分别为生成器和判别器创建优化器g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)

 主训练部分代码实现如下:

for epoch in range(epochs): # 训练epochs次# 1. 训练判别器for _ in range(1):# 采样隐藏向量batch_z = tf.random.normal([batch_size, z_dim])batch_x = next(db_iter) # 采样真实图片# 判别器前向计算with tf.GradientTape() as tape:d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)grads = tape.gradient(d_loss, discriminator.trainable_variables)d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))# 2. 训练生成器# 采样隐藏向量batch_z = tf.random.normal([batch_size, z_dim])batch_x = next(db_iter) # 采样真实图片# 生成器前向计算with tf.GradientTape() as tape:g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)grads = tape.gradient(g_loss, generator.trainable_variables)g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))

每间隔100个Epoch,进行一次图片生成测试。通过从先验分布中随机采样隐向量,送入生成器生成图片,并保存为文件。

 如下图所示,展示了DCGAN模型在训练过程中保存的生成图片样例,可以观察到,大部分图片主体明确,色彩逼真,图片多样性较丰富,图片效果较为贴近数据集中真实的图片。同时也能发现仍有少量生成图片损坏,无法通过人眼辨识主体。

DCGAN图片生成效果

5. 完整代码

dataset

import multiprocessingimport tensorflow as tfdef make_anime_dataset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):# @tf.functiondef _map_fn(img):img = tf.image.resize(img, [resize, resize])# img = tf.image.random_crop(img,[resize, resize])# img = tf.image.random_flip_left_right(img)# img = tf.image.random_flip_up_down(img)img = tf.clip_by_value(img, 0, 255)img = img / 127.5 - 1 # -1~1return imgdataset = disk_image_batch_dataset(img_paths,batch_size,drop_remainder=drop_remainder,map_fn=_map_fn,shuffle=shuffle,repeat=repeat)img_shape = (resize, resize, 3)len_dataset = len(img_paths) // batch_sizereturn dataset, img_shape, len_datasetdef batch_dataset(dataset,batch_size,drop_remainder=True,n_prefetch_batch=1,filter_fn=None,map_fn=None,n_map_threads=None,filter_after_map=False,shuffle=True,shuffle_buffer_size=None,repeat=None):# set defaultsif n_map_threads is None:n_map_threads = multiprocessing.cpu_count()if shuffle and shuffle_buffer_size is None:shuffle_buffer_size = max(batch_size * 128, 2048) # set the minimum buffer size as 2048# [*] it is efficient to conduct `shuffle` before `map`/`filter` because `map`/`filter` is sometimes costlyif shuffle:dataset = dataset.shuffle(shuffle_buffer_size)if not filter_after_map:if filter_fn:dataset = dataset.filter(filter_fn)if map_fn:dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)else: # [*] this is slowerif map_fn:dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)if filter_fn:dataset = dataset.filter(filter_fn)dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)dataset = dataset.repeat(repeat).prefetch(n_prefetch_batch)return datasetdef memory_data_batch_dataset(memory_data,batch_size,drop_remainder=True,n_prefetch_batch=1,filter_fn=None,map_fn=None,n_map_threads=None,filter_after_map=False,shuffle=True,shuffle_buffer_size=None,repeat=None):"""Batch dataset of memory data.Parameters----------memory_data : nested structure of tensors/ndarrays/lists"""dataset = tf.data.Dataset.from_tensor_slices(memory_data)dataset = batch_dataset(dataset,batch_size,drop_remainder=drop_remainder,n_prefetch_batch=n_prefetch_batch,filter_fn=filter_fn,map_fn=map_fn,n_map_threads=n_map_threads,filter_after_map=filter_after_map,shuffle=shuffle,shuffle_buffer_size=shuffle_buffer_size,repeat=repeat)return datasetdef disk_image_batch_dataset(img_paths,batch_size,labels=None,drop_remainder=True,n_prefetch_batch=1,filter_fn=None,map_fn=None,n_map_threads=None,filter_after_map=False,shuffle=True,shuffle_buffer_size=None,repeat=None):"""Batch dataset of disk image for PNG and JPEG.Parameters----------img_paths : 1d-tensor/ndarray/list of strlabels : nested structure of tensors/ndarrays/lists"""if labels is None:memory_data = img_pathselse:memory_data = (img_paths, labels)def parse_fn(path, *label):img = tf.io.read_file(path)img = tf.image.decode_jpeg(img, channels=3) # fix channels to 3return (img,) + labelif map_fn: # fuse `map_fn` and `parse_fn`def map_fn_(*args):return map_fn(*parse_fn(*args))else:map_fn_ = parse_fndataset = memory_data_batch_dataset(memory_data,batch_size,drop_remainder=drop_remainder,n_prefetch_batch=n_prefetch_batch,filter_fn=filter_fn,map_fn=map_fn_,n_map_threads=n_map_threads,filter_after_map=filter_after_map,shuffle=shuffle,shuffle_buffer_size=shuffle_buffer_size,repeat=repeat)return dataset

GAN

import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layersclass Generator(keras.Model):# 生成器网络def __init__(self):super(Generator, self).__init__()filter = 64# 转置卷积层1,输出channel为filter*8,核大小4,步长1,不使用padding,不使用偏置self.conv1 = layers.Conv2DTranspose(filter*8, 4, 1, 'valid', use_bias=False)self.bn1 = layers.BatchNormalization()# 转置卷积层2self.conv2 = layers.Conv2DTranspose(filter*4, 4, 2, 'same', use_bias=False)self.bn2 = layers.BatchNormalization()# 转置卷积层3self.conv3 = layers.Conv2DTranspose(filter*2, 4, 2, 'same', use_bias=False)self.bn3 = layers.BatchNormalization()# 转置卷积层4self.conv4 = layers.Conv2DTranspose(filter*1, 4, 2, 'same', use_bias=False)self.bn4 = layers.BatchNormalization()# 转置卷积层5self.conv5 = layers.Conv2DTranspose(3, 4, 2, 'same', use_bias=False)def call(self, inputs, training=None):x = inputs # [z, 100]# Reshape乘4D张量,方便后续转置卷积运算:(b, 1, 1, 100)x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))x = tf.nn.relu(x) # 激活函数# 转置卷积-BN-激活函数:(b, 4, 4, 512)x = tf.nn.relu(self.bn1(self.conv1(x), training=training))# 转置卷积-BN-激活函数:(b, 8, 8, 256)x = tf.nn.relu(self.bn2(self.conv2(x), training=training))# 转置卷积-BN-激活函数:(b, 16, 16, 128)x = tf.nn.relu(self.bn3(self.conv3(x), training=training))# 转置卷积-BN-激活函数:(b, 32, 32, 64)x = tf.nn.relu(self.bn4(self.conv4(x), training=training))# 转置卷积-激活函数:(b, 64, 64, 3)x = self.conv5(x)x = tf.tanh(x) # 输出x范围-1~1,与预处理一致return xclass Discriminator(keras.Model):# 判别器def __init__(self):super(Discriminator, self).__init__()filter = 64# 卷积层1self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_bias=False)self.bn1 = layers.BatchNormalization()# 卷积层2self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid', use_bias=False)self.bn2 = layers.BatchNormalization()# 卷积层3self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid', use_bias=False)self.bn3 = layers.BatchNormalization()# 卷积层4self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid', use_bias=False)self.bn4 = layers.BatchNormalization()# 卷积层5self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid', use_bias=False)self.bn5 = layers.BatchNormalization()# 全局池化层self.pool = layers.GlobalAveragePooling2D()# 特征打平self.flatten = layers.Flatten()# 二分类全连接层self.fc = layers.Dense(1)def call(self, inputs, training=None):# 卷积-BN-激活函数:(4, 31, 31, 64)x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs), training=training))# 卷积-BN-激活函数:(4, 14, 14, 128)x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))# 卷积-BN-激活函数:(4, 6, 6, 256)x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))# 卷积-BN-激活函数:(4, 4, 4, 512)x = tf.nn.leaky_relu(self.bn4(self.conv4(x), training=training))# 卷积-BN-激活函数:(4, 2, 2, 1024)x = tf.nn.leaky_relu(self.bn5(self.conv5(x), training=training))# 卷积-BN-激活函数:(4, 1024)x = self.pool(x)# 打平x = self.flatten(x)# 输出,[b, 1024] => [b, 1]logits = self.fc(x)return logitsdef main():d = Discriminator()g = Generator()x = tf.random.normal([2, 64, 64, 3])z = tf.random.normal([2, 100])prob = d(x)print(prob)x_hat = g(z)print(x_hat.shape)if __name__ == '__main__':main()

GAN_train

import osimport numpy as npimport tensorflow as tffrom tensorflow import keras# from scipy.misc import toimagefrom PIL import Imageimport globfrom Chapter13.GAN import Generator, Discriminatorfrom Chapter13.dataset import make_anime_datasetdef save_result(val_out, val_block_size, image_path, color_mode):def preprocess(img):img = ((img + 1.0) * 127.5).astype(np.uint8)# img = img.astype(np.uint8)return imgpreprocesed = preprocess(val_out)final_image = np.array([])single_row = np.array([])for b in range(val_out.shape[0]):# concat image into a rowif single_row.size == 0:single_row = preprocesed[b, :, :, :]else:single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)# concat image row to final_imageif (b + 1) % val_block_size == 0:if final_image.size == 0:final_image = single_rowelse:final_image = np.concatenate((final_image, single_row), axis=0)# reset single rowsingle_row = np.array([])if final_image.shape[2] == 1:final_image = np.squeeze(final_image, axis=2)Image.fromarray(final_image).save(image_path)def celoss_ones(logits):# 计算属于与标签为1的交叉熵y = tf.ones_like(logits)loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)return tf.reduce_mean(loss)def celoss_zeros(logits):# 计算属于与便签为0的交叉熵y = tf.zeros_like(logits)loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)return tf.reduce_mean(loss)def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):# 计算判别器的误差函数# 采样生成图片fake_image = generator(batch_z, is_training)# 判定生成图片d_fake_logits = discriminator(fake_image, is_training)# 判定真实图片d_real_logits = discriminator(batch_x, is_training)# 真实图片与1之间的误差d_loss_real = celoss_ones(d_real_logits)# 生成图片与0之间的误差d_loss_fake = celoss_zeros(d_fake_logits)# 合并误差loss = d_loss_fake + d_loss_realreturn lossdef g_loss_fn(generator, discriminator, batch_z, is_training):# 采样生成图片fake_image = generator(batch_z, is_training)# 在训练生成网络时,需要迫使生成图片判定为真d_fake_logits = discriminator(fake_image, is_training)# 计算生成图片与1之间的误差loss = celoss_ones(d_fake_logits)return lossdef main():tf.random.set_seed(3333)np.random.seed(3333)os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'assert tf.__version__.startswith('2.')z_dim = 100 # 隐藏向量z的长度epochs = 3000000 # 训练步数batch_size = 64 # batch sizelearning_rate = 0.0002is_training = True# 获取数据集路径# C:\Users\z390\Downloads\anime-faces# r'C:\Users\z390\Downloads\faces\*.jpg'# img_path = glob.glob(r'/Users/XXX/Documents/faces_test\*\*.jpg') + \# glob.glob(r'/Users/XXX/Documents/faces_test\*\*.png')# 数据集路径img_path = glob.glob(r'/Users/XXX/Documents/faces_test/*.jpg')# img_path = glob.glob(r'C:\Users\z390\Downloads\getchu_aligned_with_label\GetChu_aligned2\*.jpg')# img_path.extend(img_path2)print('images num:', len(img_path))# 构建数据集对象,返回数据集Dataset类和图片大小dataset, img_shape, _ = make_anime_dataset(img_path, batch_size, resize=64)print(dataset, img_shape)sample = next(iter(dataset)) # 采样print(sample.shape, tf.reduce_max(sample).numpy(),tf.reduce_min(sample).numpy())dataset = dataset.repeat(100) # 重复循环db_iter = iter(dataset)generator = Generator() # 创建生成器generator.build(input_shape=(4, z_dim))discriminator = Discriminator() # 创建判别器discriminator.build(input_shape=(4, 64, 64, 3))# 分别为生成器和判别器创建优化器g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)# generator.load_weights('generator.ckpt')# discriminator.load_weights('discriminator.ckpt')# print('Loaded chpt!!')d_losses, g_losses = [], []for epoch in range(epochs): # 训练epochs次# 1. 训练判别器for _ in range(1):# 采样隐藏向量batch_z = tf.random.normal([batch_size, z_dim])batch_x = next(db_iter) # 采样真实图片# 判别器前向计算with tf.GradientTape() as tape:d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)grads = tape.gradient(d_loss, discriminator.trainable_variables)d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))# 2. 训练生成器# 采样隐藏向量batch_z = tf.random.normal([batch_size, z_dim])batch_x = next(db_iter) # 采样真实图片# 生成器前向计算with tf.GradientTape() as tape:g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)grads = tape.gradient(g_loss, generator.trainable_variables)g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))if epoch % 100 == 0:print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss))# 可视化z = tf.random.normal([100, z_dim])fake_image = generator(z, training=False)img_path = os.path.join('GAN_images_test', 'gan-%d.png' % epoch)save_result(fake_image.numpy(), 10, img_path, color_mode='P')d_losses.append(float(d_loss))g_losses.append(float(g_loss))if epoch % 10000 == 1:# print(d_losses)# print(g_losses)generator.save_weights('generator.ckpt')discriminator.save_weights('discriminator.ckpt')if __name__ == '__main__':main()

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。