700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 【Python机器学习】决策树 逻辑回归 神经网络等模型对电信用户流失分类实战(附源码

【Python机器学习】决策树 逻辑回归 神经网络等模型对电信用户流失分类实战(附源码

时间:2019-10-05 16:35:36

相关推荐

【Python机器学习】决策树 逻辑回归 神经网络等模型对电信用户流失分类实战(附源码

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

电信用户流失分类

该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失

1:数据初步分析

可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。

用户信息可分为个人信息、服务订阅信息和帐单信息三类。

1)个人信息包括gender(性别)、SeniorCitizen(是否老年用户)、Partner(是否伴侣用户)和Dependents(是否亲属用户)。

2)服务订阅信息包括tenure(在网时长)、PhoneService(是否开通电话服务业务)、MultipleLines(多线业务服务:Yes,No或No phoneservice)、InternetService(互联网服务:No、DSL数字网络或光纤网络)、OnlineSecurity(网络安全服务:Yes、No或No internetserive)、OnlineBackup(在线备份业务服务:Yes、No或No internetserive)、DeviceProtection(设备保护业务服务:Yes、No或No internetserive)、TechSupport(技术支持服务:Yes、No或No internetserive)、StreamingTV(网络电视服务:Yes、No或No internetserive)、StreamingMovies(网络电影服务:Yes、No或No internetserive)。

3)帐单信息包括Contract(签订合同方式:月、一年或两年)、PaperlessBilling(是否开通电子账单)、PaymentMethod(付款方式:bank transfer、credit card、electronic check或mailed check)、MonthlyCharges(月费用)、TotalCharges(总费用)。

2.流失用户与非流失用户特征分析

1)对于用来描述分类的对象型特征的分布,可用统计图来直观显示。

部分代码如下

import matplotlib.pyplot as pltimport seaborn as snsfig, axes = plt.subplots(2, 2, figsize=(10, 8))sns.countplot(x='gender', data=df, hue='Churn', ax=axes[0][0])sns.countplot(x='SeniorCitizen', data=df, hue='Churn', ax=axes[0][1])sns.countplot(x='Partner', data=df, hue='Churn', ax=axes[1][0])sns.countplot(x='Dependents', data=df, hue='Churn', ax=axes[1][1])

2)对于数值型特征的分布,可用密度图来直观显示

实线表示流失用户,虚线表示非流失用户,可见新用户流失率要高一些

3:分类预测

数据的类型分为对象型和数值型两类。对象型是离散的类别数据,需要对它们进行编码才能形成训练模型的特征。

如果是二值的对象型数据,可以直接用0和1来对它们进行编码。如果取值类别个数多于2,一般可用独热编码。

对于需要进行距离计算的模型,一般还需要对数值型特征进行归一化处理或标准化处理。

经过上述处理后,采用保持法将训练样本切分为训练集和验证集,用来建模并验证模型。

各种方法的准确度及AUC如下

部分代码如下

#!/usr/bin/env python# coding: utf-8# ## 1.加载数据,初步观察# In[1]:import pandas as pdimport numpy as np# 观察各特征的类型,是否有缺失值df.info()# 各特征含义为:customerID:用户ID;# gender:性别(Female & Male);# SeniorCitizen:老年用户(1表示是,0表示不是);# Partner:伴侣用户(Yes or No);# Dependents:亲属用户(Yes or No);# tenure:在网时长(0-72月);# PhoneService:是否开通电话服务业务(Yes or No);# MultipleLines:是否开通了多线业务(Yes 、No or No phoneservice 三种);# InternetService:是否开通互联网服务 (No, DSL数字网络,fiber optic光纤网络 三种);# OnlineSecurity:是否开通网络安全服务(Yes,No,No internetserive 三种);# OnlineBackup:是否开通在线备份业务(Yes,No,No internetserive 三种);# DeviceProtection:是否开通了设备保护业务(Yes,No,No internetserive 三种);# TechSupport:是否开通了技术支持服务(Yes,No,No internetserive 三种);# StreamingTV:是否开通网络电视(Yes,No,No internetserive 三种);# StreamingMovies:是否开通网络电影(Yes,No,No internetserive 三种);# Contract:签订合同方式 (按月,一年,两年);# PaperlessBilling:是否开通电子账单(Yes or No);# PaymentMethod:付款方式(bank transfer,credit card,electronic check,mailed check);# MonthlyCharges:月费用;# TotalCharges:总费用;# Churn:该用户是否流失(Yes or No)。# In[6]:# 观察是否有重复值df.customerID.duplicated().sum()# In[7]:# 观察特征的取值情况df.nunique()# In[8]:# 观察下各对象型特征的取值print('gender : ', set(df['gender']))print('Partner : ', set(df['Partner']))print('Dependents : ', set(df['Dependents']))print('PhoneService : ', set(df['PhoneService']))print('MultipleLines : ', set(df['MultipleLines']))print('InternetService : ', set(df['InternetService']))print('OnlineSecurity : ', set(df['OnlineSecurity']))print('OnlineBackup : ', set(df['OnlineBackup']))print('DeviceProtection : ', set(df['DeviceProtection']))print('TechSupport : ', set(df['TechSupport']))print('StreamingTV : ', set(df['StreamingTV']))print('StreamingMovies : ', set(df['StreamingMovies']))print('Contract : ', set(df['Contract']))print('PaperlessBilling : ', set(df['PaperlessBilling']))print('PaymentMethod : ', set(df['PaymentMethod']))print('Churn : ', set(df['Churn']))# ## 2.流失用户与非流失用户特征分析# ### 2.1流失用户与非流失用户的个人信息对比# In[9]:import matplotlib.pyplot as pltimport seaborn as snsfig, axes = plt.subplots(2, 2, figsize=(10, 8))sns.countplot(x='gender', data=df, hue='Churn', ax=axes[0][0])sns.countplot(x='SeniorCitizen', data=df, hue='Churn', ax=axes[0][1])sns.countplot(x='Partner', data=df, hue='Churn', ax=axes[1][0])sns.countplot(x='Dependents', data=df, hue='Churn', ax=axes[1][1])# ### 2.2流失用户与非流失用户的服务订阅信息对比# In[10]:plt.rc('font', family='SimHei')plt.title("在网时长密度图")ax1 = sns.kdeplot(df[df['Churn'] == 'Yes']['tenure'], color='r', linestyle='-', label='Churn:Yes')ax1 = sns.kdeplot(df[df['Churn'] == 'No']['tenure'], color='b', linestyle='--', label='Churn:No')# In[11]:fig, axes = plt.subplots(3, 3, figsize=(10, 8))sns.countplot(x='PhoneService', data=df, hue='Churn', ax=axes[0][0])sns.countplot(x='MultipleLines', data=df, hue='Churn', ax=axes[0][1])sns.countplot(x='InternetService', data=df, hue='Churn', ax=axes[0][2])sns.countplot(x='OnlineSecurity', data=df, hue='Churn', ax=axes[1][0])sns.countplot(x='OnlineBackup', data=df, hue='Churn', ax=axes[1][1])sns.countplot(x='DeviceProtection', data=df, hue='Churn', ax=axes[1][2])sns.countplot(x='TechSupport', data=df, hue='Churn', ax=axes[2][0])sns.countplot(x='StreamingTV', data=df, hue='Churn', ax=axes[2][1])sns.countplot(x='StreamingMovies', data=df, hue='Churn', ax=axes[2][2])# ### 2.3流失用户与非流失用户帐单信息对比# In[12]:fig, axes = plt.subplots(1, 2, figsize=(10, 4))sns.countplot(x='Contract', data=df, hue='Churn', ax=axes[0])sns.countplot(x='PaperlessBilling', data=df, hue='Churn', ax=axes[1])# In[13]:sns.countplot(x='PaymentMethod', data=df, hue='Churn')# In[14]:plt.title("月费用密度图")ax1 = sns.kdeplot(df[df['Churn'] == 'Yes']['MonthlyCharges'], color='r', linestyle='-', label='Churn:Yes')ax1 = sns.kdeplot(df[df['Churn'] == 'No']['MonthlyCharges'], color='b', linestyle='--', label='Churn:No')# In[15]:# 尝试转化为数值df.TotalCharges = pd.to_numeric(df.TotalCharges, errors="raise")# In[16]:# 根据报错提示,观察下空格字符串的分布df[df.TotalCharges == " "]# In[17]:# 用0代替空字符串,重新尝试df['TotalCharges'] = df['TotalCharges'].replace(" ", 0)df.TotalCharges = pd.to_numeric(df.TotalCharges, errors="raise")# In[18]:plt.title("总费用密度图")ax1 = sns.kdeplot(df[df['Churn'] == 'Yes']['TotalCharges'], color='r', linestyle='-', label='Churn:Yes')ax1 = sns.kdeplot(df[df['Churn'] == 'No']['TotalCharges'], color='b', linestyle='--', label='Churn:No')# ## 3.分类预测# ### 3.1 编码,提取特征# In[19]:df_clu = df.drop(['Unnamed: 0', 'customerID', 'Churn'], axis=1)labels = df['Churn']# In[20]:# 二值对象型特征转换成数值型df_clu['gender'] = df_clu['gender'].replace('Male', 1).replace('Female', 0)df_clu['Partner'] = df_clu['Partner'].replace('Yes', 1).replace('No', 0)df_clu['Dependents'] = df_clu['Dependents'].replace('Yes', 1).replace('No', 0)df_clu['PhoneService'] = df_clu['PhoneService'].replace('Yes', 1).replace('No', 0)df_clu['PaperlessBilling'] = df_clu['PaperlessBilling'].replace('Yes', 1).replace('No', 0)labels = labels.replace('Yes', 1).replace('No', 0)# In[21]:# 离散的,可用距离度量的对象型特征转化为数值型df_clu['Contract'] = df_clu['Contract'].replace("Month-to-month", 1).replace("One year", 12).replace("Two year", 24)# In[22]:# 离散的,不宜用距离度量的特征用one-hot编码df_clu = pd.get_dummies(df_clu)df_clu.info()# In[23]:df_clu.max()# In[24]:# 数据归一化df_clu['tenure'] = ( df_clu['tenure'] - df_clu['tenure'].min() )/( df_clu['tenure'].max() - df_clu['tenure'].min() )df_clu['Contract'] = ( df_clu['Contract'] - df_clu['Contract'].min() )/( df_clu['Contract'].max() - df_clu['Contract'].min() )df_clu['MonthlyCharges'] = ( df_clu['MonthlyCharges'] - df_clu['MonthlyCharges'].min() )/( df_clu['MonthlyCharges'].max() - df_clu['MonthlyCharges'].min() )df_clu['TotalCharges'] = ( df_clu['TotalCharges'] - df_clu['TotalCharges'].min() )/( df_clu['TotalCharges'].max() - df_clu['TotalCharges'].min() )# ### 3.2 保持法切分训练集和验证集 # In[25]:from sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_score, classification_report, roc_auc_score# 将数据集分成训练集和验证集X_train, X_test, y_train, y_test = train_test_split(df_clu, labels, test_size=0.3, random_state = 1026)# ### 3.3 建模并验证 # In[26]:# 多项式朴素贝叶斯模型from sklearn.naive_bayes import MultinomialNBmodel = MultinomialNB()model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[27]:# 高期朴素贝叶斯模型from sklearn.naive_bayes import GaussianNBmodel = GaussianNB()model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[28]:# 逻辑回归模型from sklearn.linear_model import LogisticRegressionmodel = LogisticRegression(solver='liblinear', penalty='l1')'''solver:一个字符串,指定了求解最优化问题的算法,可以为如下的值:'newton-cg':使用牛顿法。'lbfgs':使用L-BFGS拟牛顿法。'liblinear' :使用 liblinear。'sag':使用 Stochastic Average Gradient descent 算法。'''model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[29]:# 决策树模型from sklearn.tree import DecisionTreeClassifiermodel = DecisionTreeClassifier(random_state=1026)model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[30]:# 决策树模型给出的特征重要性model.feature_importances_# In[31]:# 随机森林模型from sklearn.ensemble import RandomForestClassifiermodel = RandomForestClassifier(n_estimators=10, random_state=1026)model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[32]:# 随机森林模型给出的特征重要性model.feature_importances_# In[33]:# 装袋决策树模型from sklearn.ensemble import BaggingClassifiermodel = BaggingClassifier(n_estimators=10, random_state=1026)model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[34]:# 极端随机树模型from sklearn.ensemble import ExtraTreesClassifiermodel = ExtraTreesClassifier(n_estimators=10, random_state=1026)model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[35]:# 梯度提升树模型from sklearn.ensemble import GradientBoostingClassifiermodel = GradientBoostingClassifier(n_estimators=10, random_state=1026)model.fit(X_train, y_train)predictions = model.predict(X_test)print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[162]:# 多层全连接层神经网络模型-TensorFlow2框架下实现import tensorflow as tftf_model = tf.keras.Sequential([tf.keras.layers.Dense(100, activation='relu', input_shape=(38,), kernel_initializer='random_uniform'),tf.keras.layers.Dense(100, activation='relu', kernel_initializer='random_uniform'),tf.keras.layers.Dense(1, activation='sigmoid', kernel_initializer='random_uniform')])# In[163]:batch_size = 100 # 每批训练样本数(批梯度下降法)tf_epoch = pile(optimizer='adam', loss='mse', metrics=['accuracy'])tf_model.summary()tf_model.fit(np.array(X_train), np.array(y_train), validation_data=(np.array(X_test), np.array(y_test)), batch_size=batch_size, epochs=tf_epoch, verbose=1)# In[164]:predictions = tf_model.predict(X_test)predictions = list(np.round(predictions).reshape(-1,1)) # 四舍五入得到预测值print('Test set accuracy score: ', accuracy_score(y_test, predictions))print('Area under the ROC curve: ', roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[173]:# 多层全连接层神经网络模型-MindSpore框架下实现import mindspore as mscldef construct(self, x):x = self.relu(self.fc1(x))x = self.relu(self.fc2(x))x = self.sigmoid(self.fc3(x))return xnet = ms_mode() # 实例化net_loss = ms.nn.loss.MSELoss() # 定义损失函数opt = ms.nn.Adam(params=net.trainable_params(), learning_rate=0.00005) # 定义优化方法ms_model = ms.Model(net, net_loss, opt) # 将网络结构、损失函数和优化方法进行关联# In[167]:yy.append([0, 1])else:yy.append([1, 0])yy = np.array(yy).astype(np.float32)# In[176]:class DatasetGenerator:def __init__(self, X, y):self.data = Xself.label = ydef __getitem__(self, index):return self.data[index], self.label[index]def __len__(self):return len(self.data)batch_size = 100 # 每批训练样本数rain.batch(batch_size)ds_train = ds_train.repeat(repeat_size)from mindspore.train.callback import LossMonitor, TimeMonitorloss_cb = LossMonitor(per_print_times=1)time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())ms_epoch = 30ms_model.train(ms_epoch, ds_train, dataset_sink_mode=False, callbacks=[loss_cb, time_cb])# In[177]:# 预测predictions = []#xx = X_test.valuesfor i in range(len(X_test)):y_p = ms_model.predict(ms.Tensor([X_test[i]], ms.float32))predictions.append(y_p.asnumpy()[0][0]) # 直接取独热编码的第一个值predictions = roc_auc_score(y_test, predictions))print(classification_report(y_test, predictions))# In[ ]:

创作不易 觉得有帮助请点赞关注收藏~~~

【Python机器学习】决策树 逻辑回归 神经网络等模型对电信用户流失分类实战(附源码和数据集)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。