700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 估值调整 - 凸性调整

估值调整 - 凸性调整

时间:2018-07-09 22:40:13

相关推荐

估值调整 - 凸性调整

本文有3797字,37图表截屏

建议阅读20分钟

0

引言

本文是金融工程系列的第九篇

弄清量化金融十大话题 (上)

弄清量化金融十大话题 (下)

金融工程高度概览

日期生成

变量计算

模型校正

曲线构建 I - 单曲线

曲线构建 II - 多曲线(基差)

曲线构建 III - 多曲线方法 (抵押品)

产品估值理论

产品估值 - 解析法和数值积分法 (CF)

产品估值 -偏微分方程有限差分法 (PDE-FD)

产品估值 -蒙特卡洛模拟法 (MC)

产品风险理论 (AAD)

风险计量 - 敏感度 (Greeks & Sensitivities)

风险计量 -风险价值 (VaR)

价值调整 - 凸性调整

价值调整 -时间调整

价值调整 -Quanto调整

价值调整 - CVA

价值调整 - DVA

价值调整 - FVA

价值调整 - MVA

价值调整 - KVA

金融产品的估值调整分两类:

和远期变量有关:凸性调整、时间调整和Quanto调整

XVA系列:CVA、DVA、FVA、MVA 和KVA

本帖讲凸性调整,先介绍什么是凸性,再定性分析得到远期和期货之间的差异,最后定量分析计算各类期货的凸性调整项。

1

凸性

在利率市场要了解凸性,我们必须了解欧洲美元期货(Eurodollar Futures, EDF)市场与远期利率协议(Forward Rate Agreement, FRA)市场之间的相似之处。这两个市场都是高流动性的大市场,对短期利率定价有很大的影响。

凸性偏差(convexity bias)的产生的本质就是期货市场与远期市场之间的收益差异,如下图所示。

EDF合约的支付函数为 Nfut×(1 – 0.25F),其中Nfut是本金1,000,000美元,F是期货利率。当F上升1个基点(basis point)即0.01%,那么EDF合约价格变动–0.25Nfut×∆F = -25美元,EDF合约买方像卖方支付25 美元。

见上面左图,EDF合约价格和EDF基础利率有线性关系,即对于1单位的利率变动,价格变动是常数,具体来说

如果利率上升1 个基点,则EDF合约价格减少25美元

如果利率下降1 个基点,则EDF合约价格增加25美元

由于有折现影响,FRA合约价格和利率没有这样的线性关系,而是呈现上面右图的凸性关系。期货利率和远期利率的关系可参考〖变量计算〗一贴。

弄清了凸性偏差产生的原因后,接着就要调整凸性,即做凸性调整(convexity adjustment),有定性(qualitive)和定量(quantitative)两种方法。

2

定性方法

定义在t时点观测到T开始U结束的远期利率 L 和期货利率F:

当t = 0 时,远期和期货利率之间的差异为

一般折现因子D(0,U) 和利率 L(T) 成反比,因此两者之间的协方差小于零,因此期货利率F(0)大于远期利率L(0)。证明如下:

我们可写出

除了远期和期货利率之间的有以上关系,远期和期货价格之间也有类似关系,如下

这些价格可以是股票或者商品价格,到期日只有一个T,上面关系可转换成下面的数学表达式

有时候,在股票或商品市场上假设利率不是随机的,那么折现因子也不是随机的,那么折现因子和即期价格的协方差为零,这时远期价格等于期货价格。证明如下:

一般折现因子D(0,T) 和即期价格 S(T) 成正比,因此两者之间的协方差大于零,因此期货价格Fut(0,T) 小于远期价格Fwd(0, T)。

3

定量方法

3.1

理论推导

定性方法可以大概分析出不同资产类别下面的凸性调整项(CA项)的符号,要精确计算其值还需要定量方法。以利率类举例,计算在Q-测度下的远期利率:

接着就是用各种利率模型(Black, Hull-White (HW)或者HJM)来推导P(T,U)了。

以HW模型举例,在Q-测度下,短利率(short rate)r(t) 服从以下随机微分方程(Stochastic Differential Equation, SDE):

其中κ(t) 是均值回归速率,σr(t) 是短利率的波动率,而θ(t) 是均值水平。为了能使HW 模型计算出来的折现因子和市场曲线匹配,θ(t) 应该被校正为

其中f(0, t)是瞬时远期利率,表达式为f(0,t) = -∂lnP(0, t)/∂t,本帖后面详细讲解如何计算它。

上面θ(t)太过于复杂了,通过定义 x(t) = r(t) – f(0, t),我们可在后面去掉它。这时推出x(t)的随机微分方程如下:

推导出HW模型下的零息债价格P(t,T) 为

上面结果是Piterbarg 和Andersen在【1】推导出来的,注意模型参数是和时间相关的。如果假设模型参数是常数的话,即κ和σr,我们可以得到Brigo 和 Mercurio在【2】推导出来的结果。

对比Piterbarg和Andersen的版本和Brigo和Mercurio的版本,我们发现

个人更喜欢Piterbarg和Andersen的版本,因为它更加通用和一致,尤其在高维的情况下。本小节为了符号简洁,便采用常参数,即用Brigo和 Mercurio的版本。这时短利率r(T)的表达式化简如下:

根据随机微积分的性质,不难得到r(T) 的均值和方差,以及r(T) 和r(U)的协方差:

有了以上各种 r(T) 的统计量,我们可以计算在Q-测度下的远期利率了。

最后一步我们用了性质:当X是正态变量时

E[exp(aX)]= exp(aE[X]+0.5a2Var[X])

上述公式适用于各类的基准利率,当

U = T+1D时,L(T, T, U) 可以模拟隔夜利率

U = T+1W时,L(T, T, U) 可以模拟RIBA期货中的7天利率

U = T+3M时,L(T, T, U) 可以模拟IBOR期货中的3个月利率

3.2

具体案例

IBOR 期货

IBOR 期货的基准利率一般都是3个月的IBOR,用L(T, T, U) 表示,其中U和T相差3个月。该利率在Q-测度下的期望为

其中

需要注意的是,虽然T和U出现多次,但在δ(T, U) 遵循ACT/360 惯例,而在其它地方遵循ACT/365惯例。

在上式中,假设市场曲线零息利率R(0, t)是用一元三次条方法来插值,我们可以计算出f(0, t),首先根据定义

假设R(0, t) 的期限结构表示为:(t1,R1)、…、(tm,Rm)。对任一时点 t属于[tk-1, tk],曲线上的零息利率为:

其中c3,k, c2,k, c1,k, c0,k 为[tk-1, tk] 区间上三次多项式的系数。根据上式可计算R(0, t) 的一阶导,如下:

这是我们可以任意时点t上的f(0, t) 值了。

1 个月 OIS 期货

1个月OIS期货包括SOFR-1M和FedFund-1M期货,其支付基于在参考月(reference month)中每个工作日上隔夜利率的算术平均,将其平均利率定义为R:

其中

n = 在合约参考月中工作日的总天数

L(ti, ti, ti+1) = 第 i 个工作日ti上的隔夜利率

di = L(ti, ti, ti+1) 生效的天数(当星期五时di = 3,当其他工作日时di = 1)

D = Σidi = 在合约参考月中日历日的总天数

当估值日为ts,考虑历史定盘,利率R在Q-测度下的期望为

注意δi是从ti 到ti+1遵循 ACT/360 惯例计算出来的年限,在本例中等于1/360。

3 个月 OIS 期货

3个月OIS期货包括SOFR-3M, EONIA-3M和SONIA-3M期货,其支付基于在参考季度(reference quarter)中每个工作日上隔夜利率的几何平均,将其平均利率定义为R:

其中

n =在合约参考月中工作日的总天数

L(ti,ti, ti+1) =第i个工作日ti上的隔夜利率

di= L(ti, ti, ti+1)生效的天数(当星期五时di= 3,当其他工作日时di= 1)

D = Σidi =在合约参考月中日历日的总天数

当估值日为ts,考虑历史定盘,利率R在Q-测度下的期望为

其中

RIBA 期货

RIBA期货在斯特哥尔摩交易所交易的期限为3个月的期货,其支付基于在参考季度中每周利率的几何平均,将其平均利率定义为R:

其中

n = 在合约参考季度中工作日的总天数

L(ti, ti, ti+7) = 第 i 个工作日ti上的七天利率

di = 7 = L(ti, ti, ti+7) 生效的天数

D = Σidi = 在合约参考季度中日历日的总天数

当估值日为ts,考虑历史定盘,利率R在Q-测度下的期望为

其中

3.3

模型校正

HW模型参数校正有两种方法:

如果基准利率(如 USD LIBOR和EUR EURIBOR 等等)有Cap和Swaption市场,那么用隐含波动率来校正参数。用ATM Cap波动率举例,最小化一系列ATM Cap的市场价格模型价格之间的差异,来找出“最优”κ和σr

如果基准利率(如SOFR OIS 和FedFund OIS等等)没有Cap和Swaption市场,那么用历史波动率来校正参数。首先推导出HW模型下零息利率的波动率σHW(t, T)表达式

再用零息利率的一年历史数据(260工作日,t = -260, …, -1)上每个标准期限{T1,…, Tk, …, TK} 上的值,计算历史波动率

最小化一系列标准期限的历史波动率模型波动率之间的差异,来找出“最优”κ和σr

[1]Interest Rate Modeling. Volume 2: TermStructure Models, Chapter 10

Andersen L.B.G., Piterbarg V.V.

[2]Interest Rate Models – Theory and Practice,with Smile, Inflation and Credit, Chapter 3

Damiano Brigo, Fabio Mercurio

Stay Tuned!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。
相关阅读
优化算法 - 凸性

优化算法 - 凸性

2024-02-18

久期和凸性

久期和凸性

2021-02-23

怎么证明中点凸性

怎么证明中点凸性

2023-08-03

(二十)久期与凸性

(二十)久期与凸性

2021-10-16