700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 决策树算法实战之预测眼镜类型

决策树算法实战之预测眼镜类型

时间:2019-06-10 09:21:17

相关推荐

决策树算法实战之预测眼镜类型

文章目录

一、说明二、题目2.1 概述2.2 流程三、实践四、源代码4.1 work01.ipynb4.2 work01.py5. 小结

一、说明

我是在jupyter完成的,然后导出成markdown格式,ipynb文件导出为markdown的命令如下:

jupyter nbconvert --to markdown xxx.ipynb

二、题目

2.1 概述

使用决策树预测患者需要佩戴的眼镜类型,根据数据集lenses.data,分为训练集和测试集,使用ID3算法,信息增益作为属性选择度量,自顶向下的分治方式构造决策树,从有类标号的训练元组中学习决策树,再用决策树对测试集分类,计算准确率和误分类率,评估分类器的性能。

2.2 流程

收集数据

lenses.txt文件 24行数据

youngmyopenoreducedno lensesyoungmyopenonormalsoftyoungmyopeyesreducedno lensesyoungmyopeyesnormalhardyounghypernoreducedno lensesyounghypernonormalsoftyounghyperyesreducedno lensesyounghyperyesnormalhardpremyopenoreducedno lensespremyopenonormalsoftpremyopeyesreducedno lensespremyopeyesnormalhardprehypernoreducedno lensesprehypernonormalsoftprehyperyesreducedno lensesprehyperyesnormalno lensespresbyopicmyopenoreducedno lensespresbyopicmyopenonormalno lensespresbyopicmyopeyesreducedno lensespresbyopicmyopeyesnormalhardpresbyopichypernoreducedno lensespresbyopichypernonormalsoftpresbyopichyperyesreducedno lensespresbyopichyperyesnormalno lenses

准备数据:解析tab键分隔符的分析数据:快速检测数据,确保正确的解析数据内容,使用createPlot()函数绘制最终的树形图。训练算法:使用createTree()函数测试算法:编写测试函数验证决策树可以正确分类给定的数据实例使用算法:存储数的数据结构,以便下次使用时无需重新构造树

三、实践

四、源代码

4.1 work01.ipynb

data = open("lenses.txt")dataSet = [inst.strip().split("\t") for inst in data.readlines()]dataSet

[['young', 'myope', 'no', 'reduced', 'no lenses'],['young', 'myope', 'no', 'normal', 'soft'],['young', 'myope', 'yes', 'reduced', 'no lenses'],['young', 'myope', 'yes', 'normal', 'hard'],['young', 'hyper', 'no', 'reduced', 'no lenses'],['young', 'hyper', 'no', 'normal', 'soft'],['young', 'hyper', 'yes', 'reduced', 'no lenses'],['young', 'hyper', 'yes', 'normal', 'hard'],['pre', 'myope', 'no', 'reduced', 'no lenses'],['pre', 'myope', 'no', 'normal', 'soft'],['pre', 'myope', 'yes', 'reduced', 'no lenses'],['pre', 'myope', 'yes', 'normal', 'hard'],['pre', 'hyper', 'no', 'reduced', 'no lenses'],['pre', 'hyper', 'no', 'normal', 'soft'],['pre', 'hyper', 'yes', 'reduced', 'no lenses'],['pre', 'hyper', 'yes', 'normal', 'no lenses'],['presbyopic', 'myope', 'no', 'reduced', 'no lenses'],['presbyopic', 'myope', 'no', 'normal', 'no lenses'],['presbyopic', 'myope', 'yes', 'reduced', 'no lenses'],['presbyopic', 'myope', 'yes', 'normal', 'hard'],['presbyopic', 'hyper', 'no', 'reduced', 'no lenses'],['presbyopic', 'hyper', 'no', 'normal', 'soft'],['presbyopic', 'hyper', 'yes', 'reduced', 'no lenses'],['presbyopic', 'hyper', 'yes', 'normal', 'no lenses']]

np.shape(dataSet)

(24, 5)

labels = ["age", "prescript", "astigmatic", "tearRate"]

import numpy as npfrom math import logimport operator as op

# 计算给定数据集的香农熵熵越高数据越乱def calcShannonEnt(dataSet):''':param dataSet: 数据集:return: 香农熵'''labelCounts = {}for featVec in dataSet:currentLabel = featVec[-1]if (currentLabel not in labelCounts.keys()):labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0rowNum = len(dataSet)for key in labelCounts:prob = float(labelCounts[key]) / rowNumshannonEnt -= prob * log(prob, 2)return shannonEnt

# 按照某个特征上的某个值来划分数据集 分成两份def splitDataSet(dataSet, axis, value):''':param dataSet: 数据集:param axis: 特征index:param value: 值:return: 划分后的数据集'''retDataSet = []for featVec in dataSet:if (featVec[axis] == value):reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis + 1:])retDataSet.append(reducedFeatVec)return retDataSet

# 划分数据集示例splitDataSet(dataSet, 0,'young' )

[['myope', 'no', 'reduced', 'no lenses'],['myope', 'no', 'normal', 'soft'],['myope', 'yes', 'reduced', 'no lenses'],['myope', 'yes', 'normal', 'hard'],['hyper', 'no', 'reduced', 'no lenses'],['hyper', 'no', 'normal', 'soft'],['hyper', 'yes', 'reduced', 'no lenses'],['hyper', 'yes', 'normal', 'hard']]

# 选择最好的数据集划分方式def chooseBestFeatureToSplit(dataSet):''':param dataSet: 数据集:return: bestFeature'''# numFeatures=len(dataSet[0])-1 # 特征的数量(因每一行有一列类别,故减一)numFeatures = np.shape(dataSet)[1] - 1baseEntropy = calcShannonEnt(dataSet)bestInfoGain = 0.0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature

# 选择最好的数据集划分方式def chooseBestFeatureToSplit(dataSet):''':param dataSet: 数据集:return: bestFeature'''# numFeatures=len(dataSet[0])-1 # 特征的数量(因每一行有一列类别,故减一)numFeatures = np.shape(dataSet)[1] - 1baseEntropy = calcShannonEnt(dataSet)bestInfoGain = 0.0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature

chooseBestFeatureToSplit(dataSet)

3

# 选取频率最高的类def majorityCnt(classList):''':param classList::return: 出现频率最高的类别名'''classCount = {} # 存储class_list每个类标签出现的频率for vote in classList: if (vote not in classCount.keys()):classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)return sortedClassCount[0][0]

classList01 = [example[-1] for example in dataSet]classList01

['no lenses','soft','no lenses','hard','no lenses','soft','no lenses','hard','no lenses','soft','no lenses','hard','no lenses','soft','no lenses','no lenses','no lenses','no lenses','no lenses','hard','no lenses','soft','no lenses','no lenses']

majorityCnt(classList01)

'no lenses'

# 创建决策树def createTree(dataSet, labels):''':param dataSet: 数据集 list:param labels: 标签 list:return: myTree 类似二叉树的结构 以dict形式'''# 复制labels,防止之后操作修改了labelslabels_cp = labels.copy()# 获取数据集中的最后一列的类标签,存入classList列表classList = [example[-1] for example in dataSet]# 结束条件一:分区的所有元组都属于同一个类if (classList.count(classList[0]) == len(classList)):return classList[0]# 结束条件二:没有剩余属性可以用来划分元组,只有类标签列,多数表决if len(dataSet[0]) == 1:return majorityCnt(classList)# 选择最优特征值bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels_cp[bestFeat]myTree = {bestFeatLabel: {}}del (labels_cp[bestFeat]) # 删除分裂属性# #将最好的属性所在列用集合取唯一值featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)# 递归for value in uniqueVals:subLabels = labels_cp[:] # 对属性的每个取值作为分枝递归建立决策树myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)return myTree

# 创建决策树tree = createTree(dataSet, labels)

tree

{'tearRate': {'reduced': 'no lenses','normal': {'astigmatic': {'no': {'age': {'presbyopic': {'prescript': {'hyper': 'soft','myope': 'no lenses'}},'young': 'soft','pre': 'soft'}},'yes': {'prescript': {'hyper': {'age': {'presbyopic': 'no lenses','young': 'hard','pre': 'no lenses'}},'myope': 'hard'}}}}}}

labels

['age', 'prescript', 'astigmatic', 'tearRate']

# 使用决策树分类def classify(inputTree,featLabels,testVec):''':param inputTree: list 决策树:param featLabels: list 特征标签:param testVec: list 测试样本的特征值:return: classLabel 该样本所属的类别'''firstStr=list(inputTree.keys())[0]# 源代码没有list,会产生错误:TypeError: 'dict_keys' object does not support indexing,# 这是由于python3改变了dict.keys,返回的是dict_keys对象,支持iterable 但不支持indexable,我们可以将其明确的转化成list:# print(firstStr)# print(featLabels)secondDict=inputTree[firstStr]featIndex=featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex]==key:if type(secondDict[key]).__name__=='dict':classLabel=classify(secondDict[key],featLabels,testVec)else:classLabel=secondDict[key]return classLabel

classify(tree, labels, ['young','myope','yes','normal'])

'hard'

分类器评估

准确率:

Accuracy=(TP+TN)/ALL = 0.8

错误率:

Error_rate=1-accuracy(M)=0.2

若对 no contact lenses类感兴趣

精度:

precision=正确分类的正元组/预测出的正元组=0.75

召回率:

Recall=TP/P=正确分类的正元组/实际正元组=1

# 画出决策树import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle="<-")

# 获取节点数def getNumLeafs(myTree):numLeafs = 0for i in myTree.keys():firstStr = ibreaksecondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':numLeafs += getNumLeafs(secondDict[key])else:numLeafs += 1return numLeafs

# 获取树的深度def getTreeDepth(myTree):maxDepth = 0for i in myTree.keys():firstStr = ibreaksecondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':thisDepth = 1 + getTreeDepth(secondDict[key])else:thisDepth = 1if thisDepth > maxDepth: maxDepth = thisDepthreturn maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt,textcoords='axes fraction',va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def plotMidText(cntrPt, parentPt, txtString):xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):numLeafs = getNumLeafs(myTree)depth = getTreeDepth(myTree)for i in myTree.keys():firstStr = ibreakcntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)plotMidText(cntrPt, parentPt, nodeTxt)plotNode(firstStr, cntrPt, parentPt, decisionNode)secondDict = myTree[firstStr]plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalDfor key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':plotTree(secondDict[key], cntrPt, str(key))else:plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalWplotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD

def createPlot(inTree):fig = plt.figure(1, facecolor='white')fig.clf()axprops = dict(xticks=[], yticks=[])createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)# createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropsesplotTree.totalW = float(getNumLeafs(inTree))plotTree.totalD = float(getTreeDepth(inTree))plotTree.xOff = -0.5 / plotTree.totalW;plotTree.yOff = 1.0;plotTree(inTree, (0.5, 1.0), '')plt.show()

createPlot(tree)

# 评估模型# 这里数据不够多,结果容易出现偏差test_set=dataSet[18:24] # 取后6个作为测试集train_set = dataSet[:18] # 取前18个作为训练集print('训练集:\n', train_set)

训练集:[['young', 'myope', 'no', 'reduced', 'no lenses'], ['young', 'myope', 'no', 'normal', 'soft'], ['young', 'myope', 'yes', 'reduced', 'no lenses'], ['young', 'myope', 'yes', 'normal', 'hard'], ['young', 'hyper', 'no', 'reduced', 'no lenses'], ['young', 'hyper', 'no', 'normal', 'soft'], ['young', 'hyper', 'yes', 'reduced', 'no lenses'], ['young', 'hyper', 'yes', 'normal', 'hard'], ['pre', 'myope', 'no', 'reduced', 'no lenses'], ['pre', 'myope', 'no', 'normal', 'soft'], ['pre', 'myope', 'yes', 'reduced', 'no lenses'], ['pre', 'myope', 'yes', 'normal', 'hard'], ['pre', 'hyper', 'no', 'reduced', 'no lenses'], ['pre', 'hyper', 'no', 'normal', 'soft'], ['pre', 'hyper', 'yes', 'reduced', 'no lenses'], ['pre', 'hyper', 'yes', 'normal', 'no lenses'], ['presbyopic', 'myope', 'no', 'reduced', 'no lenses'], ['presbyopic', 'myope', 'no', 'normal', 'no lenses']]

lenses_tree = createTree(test_set, labels)print('决策树:\n', lenses_tree)

决策树:{'tearRate': {'reduced': 'no lenses', 'normal': {'prescript': {'hyper': {'astigmatic': {'no': 'soft', 'yes': 'no lenses'}}, 'myope': 'hard'}}}}

# 测试分类print('测试集:\n', test_set)

测试集:[['presbyopic', 'myope', 'yes', 'reduced', 'no lenses'], ['presbyopic', 'myope', 'yes', 'normal', 'hard'], ['presbyopic', 'hyper', 'no', 'reduced', 'no lenses'], ['presbyopic', 'hyper', 'no', 'normal', 'soft'], ['presbyopic', 'hyper', 'yes', 'reduced', 'no lenses'], ['presbyopic', 'hyper', 'yes', 'normal', 'no lenses']]

# 测试分类器def test_tree(D_set):trueclass = 0for row in range(5):if classify(lenses_tree, labels,[D_set[row][0], D_set[row][1], D_set[row][2], D_set[row][3]]) == D_set[row][4]:trueclass += 1print(D_set[row], classify(lenses_tree, labels,[D_set[row][0], D_set[row][1], D_set[row][2], lenses[row][3]]))correct_rate = trueclass / 5.0 # 分类的正确率return correct_ratescore = test_tree(test_set)print('正确率为:\n', score )print('错误率为:\n', 1 - score)

['presbyopic', 'myope', 'yes', 'reduced', 'no lenses'] no lenses['presbyopic', 'myope', 'yes', 'normal', 'hard'] hard['presbyopic', 'hyper', 'no', 'reduced', 'no lenses'] no lenses['presbyopic', 'hyper', 'no', 'normal', 'soft'] soft['presbyopic', 'hyper', 'yes', 'reduced', 'no lenses'] no lenses正确率为:1.0错误率为:0.0

4.2 work01.py

import numpy as npimport operator as opfrom math import log# 计算给定数据集的香农熵熵越高数据越乱def calcShannonEnt(dataSet):''':param dataSet: 数据集:return: 香农熵'''labelCounts = {}for featVec in dataSet:currentLabel = featVec[-1]if (currentLabel not in labelCounts.keys()):labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0rowNum = len(dataSet)for key in labelCounts:prob = float(labelCounts[key]) / rowNumshannonEnt -= prob * log(prob, 2)return shannonEnt# 按照某个特征上的某个值来划分数据集 分成两份def splitDataSet(dataSet, axis, value):''':param dataSet: 数据集:param axis: 特征index:param value: 值:return: 划分后的数据集'''retDataSet = []for featVec in dataSet:if (featVec[axis] == value):reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis + 1:])retDataSet.append(reducedFeatVec)return retDataSet# 选择最好的数据集划分方式def chooseBestFeatureToSplit(dataSet):''':param dataSet: 数据集:return: bestFeature'''# numFeatures=len(dataSet[0])-1 # 特征的数量(因每一行有一列类别,故减一)numFeatures = np.shape(dataSet)[1] - 1baseEntropy = calcShannonEnt(dataSet)bestInfoGain = 0.0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature# 选取频率最高的类def majorityCnt(classList):''':param classList::return: 出现频率最高的类别名'''classCount = {}for vote in classList:if (vote not in classCount.keys()):classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)return sortedClassCount[0][0]# 创建决策树def createTree(dataSet, labels):''':param dataSet: 数据集 list:param labels: 标签 list:return: myTree 类似二叉树的结构 以list形式'''classList = [example[-1] for example in dataSet]if (classList.count(classList[0]) == len(classList)):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel: {}}del (labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)return myTree# 使用决策树分类def classify(inputTree, featLabels, testVec):''':param inputTree: list 决策树:param featLabels: list 特征标签:param testVec: list 测试样本的特征值:return:'''for i in inputTree.keys():firstStr = ibreaksecondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)key = testVec[featIndex]valueOfFeat = secondDict[key]if isinstance(valueOfFeat, dict):classLabel = classify(valueOfFeat, featLabels, testVec)else:classLabel = valueOfFeatreturn classLabelif __name__ == '__main__':data = open("lenses.txt")dataSet = [inst.strip().split("\t") for inst in data.readlines()]print(dataSet)print(np.shape(dataSet))labels = ["age", "prescript", "astigmatic", "tearRate"]tree = createTree(dataSet, labels)print(tree)classify(tree, labels, ['young','myope','yes','normal'])import matplotlib.pyplot as pltdecisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle="<-")# 获取节点数def getNumLeafs(myTree):numLeafs = 0for i in myTree.keys():firstStr = ibreaksecondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':numLeafs += getNumLeafs(secondDict[key])else:numLeafs += 1return numLeafs# 获取树的深度def getTreeDepth(myTree):maxDepth = 0for i in myTree.keys():firstStr = ibreaksecondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':thisDepth = 1 + getTreeDepth(secondDict[key])else:thisDepth = 1if thisDepth > maxDepth: maxDepth = thisDepthreturn maxDepthdef plotNode(nodeTxt, centerPt, parentPt, nodeType):createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt,textcoords='axes fraction',va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)def plotMidText(cntrPt, parentPt, txtString):xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)def plotTree(myTree, parentPt, nodeTxt):numLeafs = getNumLeafs(myTree)depth = getTreeDepth(myTree)for i in myTree.keys():firstStr = ibreakcntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)plotMidText(cntrPt, parentPt, nodeTxt)plotNode(firstStr, cntrPt, parentPt, decisionNode)secondDict = myTree[firstStr]plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalDfor key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':plotTree(secondDict[key], cntrPt, str(key))else:plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalWplotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalDdef createPlot(inTree):fig = plt.figure(1, facecolor='white')fig.clf()axprops = dict(xticks=[], yticks=[])createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)# createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropsesplotTree.totalW = float(getNumLeafs(inTree))plotTree.totalD = float(getTreeDepth(inTree))plotTree.xOff = -0.5 / plotTree.totalW;plotTree.yOff = 1.0;plotTree(inTree, (0.5, 1.0), '')plt.show()createPlot(tree)

5. 小结

决策树分类器就像带有终止块的流程图,终止块表示分类结果。

开始处理数据集时,我们首先需要测量集合中数据的不一致性, 也就是熵,然后寻找最优方案划分数据集,直到数据集中的所有数据属于同- -分类。 ID3算法可以用于划分标称型数据集。构建决策树时,我们通常采用递归的方法将数据集转化为决策树。一般我们并不构造新的数据结构,而是使用Python语言内嵌的数据结构字典存储树节点信息。

使用Matplotlib的注解功能,我们可以将存储的树结构转化为容易理解的图形。

Python的pickle模块可用于存储决策树的结构。隐形眼镜的例子表明决策树可能会产生过多的数据集划分,从而产生过度匹配数据集的问题。我们可以通过裁剪决策树,合并相邻的无法产生大量信息增益的叶节点,消除过度匹配问题。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。