700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 《深入理解Java虚拟机》——垃圾收集器的具体实现

《深入理解Java虚拟机》——垃圾收集器的具体实现

时间:2018-05-28 13:32:51

相关推荐

《深入理解Java虚拟机》——垃圾收集器的具体实现

独角兽企业重金招聘Python工程师标准>>>

如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大的差别,并且一般都会提供参数共用户根据自己的应用特点和需求组合出各个年代所使用的收集器。这里讨论的收集器基于Sun HotSpot虚拟机1.6版Update22。包含7种作用于不同分代的收集器(包括JDK1.6_Update14后引入的Early Access版G1收集器)。

明确一个观点:虽然我们是在堆各种收集器进行比较,但并非为了挑选一个最好的收集器出来。因为知道现在为止还没哟最好的收集器出现,更加没有万能的收集器,所以我们选择的知识对具体应用最合适的收集器。这点不需要多加解释就能证明:如果有一种放之四海而皆准、任何场景下都使用的完美收集器存在,那HotSpot虚拟机就没必要实现那么多不同的收集器了。

Serial收集器

Serial收集器是最基本、历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择。这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它进行垃圾收集时,必须暂停其他所有的工作线程(Sun将这件事情称为“Stop The World”),直到它收集结束。这项工作实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户的正常工作的线程全部停掉,这对很多应用来说是难以接受的。从JDK1.3开始,HotSpot开发团队为消除或减少工作线程因内存回收而导致停顿的努力一直进行着,从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS),我们看到一个个越来越优秀也越来也复杂的收集器的出现,用户线程的停顿时间在不断缩短,但是仍然没有办法完全消除(这里暂不包括RTSJ中的收集器)。

Serial虽然老,但是实际上到现在为止,它已然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾回收,自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般不会太大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本。除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,实现上这两种收集器也公用了相当多的代码。

ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。在JDK1.5时期,HotSpot推出了一款在强交互应用中几乎可称为划时代意义的垃圾收集器——CMS收集器(Concurrent Mark Sweep),这款收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

不幸的是,CMS作为老年代的收集器,却无法与JDK1.4中已经存在的新生代收集器Parallel Seavenge配合工作,所以在JDK1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或Serial收集器中的一个。ParNew收集器也是使用-XX:+UseConcMarkSweepGC选项后的默认新生代收集器,也可以使用-XX:+UseParNewGC选项来强制指定它。

ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百的保证超越Serial收集器。当然,随着可以使用的CPU数量的增加,它对于GC来说,系统资源的利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄就4核超线程,服务器超过32个逻辑CPU的情况越来越多)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

Parallel Scavenge收集器

Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器……看上去和ParNew都一样,那它有什么特别之处?

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

停顿时间越短就越适合需要与用户交互的程序,良好的相应速度能提升用户的体验;而高吞吐量则可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数及直接设置吞吐量大小的-XX:GCTimeRatio参数。

MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过设定值。这个参数的值设得稍微小点也不会使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的;系统把新生代调小一些,收集300MB新生代肯定比收集500MB快,这也导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

GCTimeRatio参数的值应当是一个大于0小鱼100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1/(1+19)),默认值为99,那就是允许最大1%(即1/(1+99))的垃圾收集时间。

由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称为”吞吐量优先“收集器。Parallel Scavenge收集器还有一个参数-XX:UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开时,就不需要手工指定新生代的大小(-Xmm)、Eden与Survivor的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。只需要把基本的内存数据设置好(如-Xmx最大堆),然后使用MaxGCPauseMillis参数(更关注最大停时间)或GCTimeRatio参数(更关注吞吐量)给虚拟机设立一个优化目标,其他细节参数的调节工作就由虚拟机完成了。自适应策略是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用”标记-整理“算法。这个收集器的主要意义也是被Client模式下的虚拟机使用。如果在Server模式下,它主要由两大用途:一个也是在JDK1.5及之前的版本中与Parallel Scavenge收集器搭配使用,另外一个就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure的时候使用。

Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和”标记-整理“算法。这个收集器是在JDK1.6中才开始提供的,在此之前,新生代的Parallel Scvenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择。由于单线程的老年代Serial Old收集器在服务器端应用性能上的”拖累“,即便使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,又因为老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合”给力“。

直到Parallel Old收集器出现后,”吞吐量优先“收集器才完整了,在注重吞吐量及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务器上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验、CMS收集器就非常符合这类应用的需求。

CMS收集器基于”标记-清除“算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤:

初始标记(CMS initial mark)

并发标记(CMS concurrent mark)

重新标记(CMS remark)

并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要”Stop The World“。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是尽心GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期内,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行的。

CMS是一款优秀的收集器,它的最主要优点在名字上已经体现了:并发收集、低停顿,Sun的一些官方文档里面也称之为并发低停顿收集器(Concurrent Low Pause Collection)。但是CMS还远达不到完美的程度,它有以下三个显著的缺点:

CMS收集器对CPU资源非常敏感。

CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现”Concurrent Mode Failure“失败而导致另一次Full GC的产生。

CMS收集器收集结束时会产生大量空间碎片。

面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程而导致应用程序变慢,吞吐量降低。在CPU不足4个时,那么CMS对客户应用的影响就可能变得很大,因为CPU负载很大时还要分出一半的运算能力去执行收集器线程,所以客户程序的执行速度会降低了50%。为了解决这种情况,虚拟机提供了一种称为”增量式并发收集器“(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和单CPU年代PC机操作系统使用抢占式来模拟多任务机制的思想一样,就是在并发标记和并发清理的时候让GC线程、用户线程交替运行,尽量减少GC线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序影响降低了。目前的版本,i-CMS已经被声明”deprecated“,即不再提倡用户使用。

由于CMS并发清理阶段用户线程还在运行着,伴随程序的运行自然会有新的垃圾产生,这部分垃圾出现在标记之后,MCS无法在本次收集中处理这些垃圾,只能留待下一次GC。这部分垃圾称为”浮动垃圾“。因此CMS收集器等到老年代几乎完全被填满了再进行回收,需要预留一部分空间提供并发收集时的程序运作使用。在默认设置下,CMS收集器在老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数获取更好的性能。不过该值要是设置的太高,就会导致大量”Concurrent Mode Failure“失败,性能反而降低。

空间碎片过多会给大对象分配带来很大麻烦,往往会出现老年代还有很大的空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:+UseMCSCompactAtFullCollection开关参数,用于在”享受“完Full GC服务之后额外附送一个碎片整理过程,内存整理的过程是无法并发的,所以停顿时间不得不变长了。另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数用于设置在执行多少次不压缩的Full GC后,跟着来一次带压缩的。

G1收集器

G1(Garbage First)收集器是当前收集器技术发展的前沿成果,在JDK1.6 Update14中提供了Early Access版本的G1收集器以供试用。在JDK1.7正式版发布时,G1收集器仍然没有摆脱“Experimental”的标签。

G1收集器是垃圾收集理论进一步的产物,它与前面的CMS收集器相比有两个显著的改进:一是G1收集器是基于”标记-整理“算法实现的收集器,也就是说它不会产生空间碎片,这对于长时间运行的应用系统来说非常重要。二是它可以非常精确地控制停顿,即能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实施Java(RTSJ)的垃圾收集器的特征了。

G1收集器可以实现在基本不牺牲吞吐量的前提下完成低停顿的内存回收,这是由于它能够极力地避免全区域的垃圾收集,之前的收集器进行收集的范围都是整个新生代或老年代,而G1将整个Java堆(包括新生代、老年代)划分为多个大小固定的独立区域(Region),并且跟踪这些区域内的垃圾堆积程度,在后台维护一个优先列表,每次根据允许的收集时间,优先回收垃圾最多的区域(这就是Garbage First名字的由来)。区域划分及有优先级的区域回收,保证了G1收集器在有限的时间内可以获取最高的收集效率。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。