700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > NLP(新闻文本分类)——基于机器学习的文本分类

NLP(新闻文本分类)——基于机器学习的文本分类

时间:2021-12-23 13:10:20

相关推荐

NLP(新闻文本分类)——基于机器学习的文本分类

文本表示方法

在机器学习算法的训练过程中,假设给定NNN个样本,每个样本有MMM个特征,这样组成了N×MN×MN×M的样本矩阵,然后完成算法的训练和预测。同样的在计算机视觉中可以将图片的像素看作特征,每张图片看作hight×width×3hight×width×3hight×width×3的特征图,一个三维的矩阵来进入计算机进行计算。

但是在自然语言领域,上述方法却不可行:文本是不定长度的。文本表示成计算机能够运算的数字或向量的方法一般称为词嵌入(Word Embedding)方法。词嵌入将不定长的文本转换到定长的空间内,是文本分类的第一步。

什么是Embedding?

Embedding在数学上表示一个映射关系,F: X -> Y, 也就是一个Function,其中该函数是injective(就是我们所说的单射函数,每个Y只有唯一的X对应,反之亦然)和structure-preserving (结构保存,比如在X所属的空间上X1 < X2,那么映射后在Y所属空间上同理 Y1 < Y2)。那么对于word embedding,就是将单词word映射到另外一个空间,其中这个映射具有injective和structure-preserving的特点。

深度学习中,Embedding 特指用一个低维度向量表示一个实体,实体可以是一个词(Word2Vec),可以是一个物品(Item2Vec),亦或者网络关系中的节点(Graph Embedding)。

举个栗子:

使用Word2Vec将单词映射到新的向量空间,获得单词的新的表达。从图中可以得出:

Embedding(Moscow) - Embedding(Russia) ≈ Embedding(Tokyo) - Embedding(Japan),即 Embedding 之后向量可以进行计算。并且,距离相近的向量对应的实体有相近的含义。

One-Hot

独热编码(One-Hot)编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

为什么使用one-hot编码来处理离散型特征?

在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

而我们使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。

将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。

比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值,不使用one-hot编码,其表示分别是x1x_{1}x1​ = (1),x2x_{2}x2​ = (2), x3x_{3}x3​= (3)。两个工作之间的距离是,(x1x_{1}x1​, x2x_{2}x2​) = 1, d(x2x_{2}x2​, x3x_{3}x3​) = 1, d(x1x_{1}x1​, x3x_{3}x3​) = 2。那么x1x_{1}x1​和x3x_{3}x3​工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x1x_{1}x1​ = (1, 0, 0), x2x_{2}x2​= (0, 1, 0), x3x_{3}x3​= (0, 0, 1),那么两个工作之间的距离就都是sqrt(2).即每两个工作之间的距离是一样的,显得更合理。

Bag of words

Bag-of-words模型是信息检索领域常用的文档表示方法。

在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。(是不关顺序的)

也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立选择的。那么到底是什么意思呢?那么给出具体的例子说明:

John likes to watch movies. Mary likes too.John also likes to watch football games.

根据上述两句话中出现的单词, 我们能构建出一个字典 (dictionary):

{“John”: 1, “likes”: 2, “to”: 3, “watch”: 4, “movies”: 5, “also”: 6, “football”: 7, “games”: 8, “Mary”: 9, “too”: 10}

该字典中包含10个单词, 每个单词有唯一索引, 注意它们的顺序和出现在句子中的顺序没有关联. 根据这个字典, 我们能将上述两句话重新表达为下述两个向量:

[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

[1, 1, 1, 1, 0, 1, 1, 1, 0, 0]

这两个向量共包含10个元素, 其中第i个元素表示字典中第i个单词在句子中出现的次数. 因此BoW模型可认为是一种统计直方图 (histogram). 在文本检索和处理应用中, 可以通过该模型很方便的计算词频.

但是从上面我们也能够看出,在构造文档向量的过程中可以看到,我们并没有表达单词在原来句子中出现的次序(这也是bag of words的一个缺点)

N-gram模型

N-Gram是一种基于统计语言模型的算法。它的基本思想是将文本里面的内容按照字节进行大小为N的滑动窗口操作,形成了长度是N的字节片段序列。

每一个字节片段称为gram,对所有gram的出现频度进行统计,并且按照事先设定好的阈值进行过滤,形成关键gram列表,也就是这个文本的向量特征空间,列表中的每一种gram就是一个特征向量维度。

该模型基于这样一种假设,第N个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。

TF-IDF

TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术,常用于挖掘文章中的关键词,而且算法简单高效,常被工业用于最开始的文本数据清洗。

TF-IDF有两层意思,一层是"词频"(Term Frequency,缩写为TF),另一层是"逆文档频率"(Inverse Document Frequency,缩写为IDF)。

当有TF(词频)和IDF(逆文档频率)后,将这两个词相乘,就能得到一个词的TF-IDF的值。某个词在文章中的TF-IDF越大,那么一般而言这个词在这篇文章的重要性会越高,所以通过计算文章中各个词的TF-IDF,由大到小排序,排在最前面的几个词,就是该文章的关键词。

TF-IDF的优点是简单快速,而且容易理解。缺点是有时候用词频来衡量文章中的一个词的重要性不够全面,有时候重要的词出现的可能不够多,而且这种计算无法体现位置信息,无法体现词在上下文的重要性。如果要体现词的上下文结构,那么你可能需要使用word2vec算法来支持。

基于机器学习的文本分类

接下来我们将对比不同文本表示算法的精度,通过本地构建验证集计算F1得分。

Count Vectors + RidgeClassifier

岭回归即在普通线性回归模型经验风险(损失函数)的基础上加入一个L2正则项,在使其最小化的过程中对模型参数进行约束,避免过拟合。该模型主要针对自变量之间存在多重共线性或者自变量个数多于样本量的情况。

import pandas as pdfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.linear_model import RidgeClassifierfrom sklearn.metrics import f1_scoretrain_df = pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv', sep='\t', nrows=15000)vectorizer = CountVectorizer(max_features=3000)train_test = vectorizer.fit_transform(train_df['text'])clf = RidgeClassifier()clf.fit(train_test[:10000], train_df['label'].values[:10000])val_pred = clf.predict(train_test[10000:])print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))# 0.7413041490276625

TF-IDF + RidgeClassifier

随机森林本质上是许多以不同方式过拟合的决策树的集合,该模型作为Bagging算法的一种,通过对这些决策树集合的结果取平均值来降低过拟合,以获得更优的预测效果。

import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model import RidgeClassifierfrom sklearn.metrics import f1_scoretrain_df = pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv', sep='\t', nrows=15000)tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)train_test = tfidf.fit_transform(train_df['text'])clf = RidgeClassifier()clf.fit(train_test[:10000], train_df['label'].values[:10000])val_pred = clf.predict(train_test[10000:])print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))# 0.8721598830546126

参考:melody_44154393

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。