700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 深度学习模型加速方法

深度学习模型加速方法

时间:2022-05-14 09:42:41

相关推荐

深度学习模型加速方法

深度学习模型加速方法

1. 简介

深度学习(Deep Learning)因其计算复杂度或参数冗余,在一些场景和设备上限制了相应的模型部署,需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。

模型压缩算法能够有效降低参数冗余,从而减少存储占用、通信带宽和计算复杂度,有助于深度学习的应用部署,具体可划分为如下几种方法(后续重点介绍剪枝与量化):线性或非线性量化:1/2bits, int8 和 fp16等;结构或非结构剪枝:deep compression, channel pruning 和 network slimming等;其他:权重矩阵的低秩分解,知识蒸馏与网络结构简化(squeeze-net, mobile-net, shuffle-net)等;模型优化加速能够提升网络的计算效率,具体包括:Op-level的快速算法:FFT Conv2d (7x7, 9x9), Winograd Conv2d (3x3, 5x5) 等;Layer-level的快速算法:Sparse-block net [1] 等;优化工具与库:TensorRT (Nvidia), Tensor Comprehension (Facebook) 和 Distiller (Intel) 等;异构计算方法借助协处理硬件引擎(通常是PCIE加速卡、ASIC加速芯片或加速器IP),完成深度学习模型在数据中心或边缘计算领域的实际部署,包括GPU、FPGA或DSA (Domain Specific Architecture) ASIC等。异构加速硬件可以选择定制方案,通常能效、性能会更高,目前市面上流行的AI芯片或加速器可参考 [2]。显然,硬件性能提升带来的加速效果非常直观,例如2080ti与1080ti的比较(以复杂的PyramidBox人脸检测算法为例,约提速36%);另外,针对数据中心部署应用,通常选择通用方案,会有完善的生态支持,例如NVIDIA的CUDA,或者Xilinx的xDNN。

2. TensorRT基础

TensorRT是NVIDIA推出的深度学习优化加速工具,采用的原理如下图所示,具体可参考[3] [4]:

TensorRT能够优化重构由不同深度学习框架训练的深度学习模型

对于Caffe与TensorFlow训练的模型,若包含的操作都是TensorRT支持的,则可以直接由TensorRT优化重构;对于MXnet, PyTorch或其他框架训练的模型,若包含的操作都是TensorRT支持的,可以采用TensorRT API重建网络结构,并间接优化重构;其他框架训练的模型,转换为ONNX中间格式后,若包含的操作是TensorRT支持的,可采用TensorRT-ONNX接口予以优化 [27];若训练的网络模型包含TensorRT不支持的操作:TensorFlow模型可通过tf.contrib.tensorrt转换,其中不支持的操作会保留为TensorFlow计算节点;MXNet也支持类似的计算图转换方式;不支持的操作可通过Plugin API实现自定义并添加进TensorRT计算图,例如Faster Transformer的自定义扩展 [26];将深度网络划分为两个部分,一部分包含的操作都是TensorRT支持的,可以转换为TensorRT计算图。另一部则采用其他框架实现,如MXnet或PyTorch;TensorRT的int8量化需要校准(calibration)数据集,一般至少包含1000个样本(反映真实应用场景),且要求GPU的计算功能集sm >= 6.1;

在1080ti平台上,基于TensorRT4.0.1,Resnet101-v2的优化加速效果如下:

在1080ti/2080ti平台上,基于TensorRT5.1.5,Resnet101-v1d的float16加速效果如下(由于2080ti包含Tensor Core,因此float16加速效果较为明显):

3. 网络剪枝

深度学习模型因其稀疏性过拟合倾向,可以被裁剪为结构精简的网络模型,具体包括结构性剪枝与非结构性剪枝:

非结构剪枝:通常是连接级、细粒度的剪枝方法,精度相对较高,但依赖于特定算法库或硬件平台的支持,如Deep Compression [5], Sparse-Winograd [6] 算法等;结构剪枝:是filter级或layer级、粗粒度的剪枝方法,精度相对较低,但剪枝策略更为有效,不需要特定算法库或硬件平台的支持,能够直接在成熟深度学习框架上运行。如局部方式的、通过layer by layer方式的、最小化输出FM重建误差的Channel Pruning [7], ThiNet [8], Discrimination-aware Channel Pruning[9];全局方式的、通过训练期间对BN层Gamma系数施加L1正则约束的Network Slimming [10];全局方式的、按Taylor准则对Filter作重要性排序的Neuron Pruning [11];全局方式的、可动态重新更新pruned filters参数的剪枝方法 [12];基于GAN思想的GAL方法 [24],可裁剪包括Channel, Branch或Block等在内的异质结构;借助Geometric Median确定卷积滤波器冗余性的剪枝策略 [28];

Channel Pruning为例,结构剪枝的规整操作如下图所示,可兼容现有的、成熟的深度学习框架:

4. 模型量化

模型量化是指权重或激活输出可以被聚类到一些离散、低精度(reduced precision)的数值点上,通常依赖于特定算法库或硬件平台的支持:

二值化网络:XNORnet [13], ABCnet with Multiple Binary Bases [14], Bin-net with High-Order Residual Quantization [15], Bi-Real Net [16];三值化网络:Ternary weight networks [17], Trained Ternary Quantization [18];W1-A8 或 W2-A8量化:Learning Symmetric Quantization [19];INT8量化:TensorFlow-lite [20], TensorRT [21], Quantization Interval Learning [25];其他(非线性):Intel INQ [22], log-net, CNNPack [23] 等;

若模型压缩之后,推理精度存在较大损失,可以通过fine-tuning予以恢复,并在训练过程中结合适当的Tricks,例如Label Smoothing、Mix-up、Knowledge Distillation、Focal Loss等。 此外,模型压缩、优化加速策略可以联合使用,进而可获得更为极致的压缩比与加速比。例如结合Network Slimming与TensorRT int8优化,在1080ti Pascal平台上,Resnet101-v1d在压缩比为1.4倍时(Size=170MB->121MB,FLOPS=16.14G->11.01G),经TensorRT int8量化之后,推理耗时仅为7.4ms(Batch size=8)。

其中知识蒸馏(Knowledge Distillation)相关的讨论可参考:

/nature553863/article/details/80568658

References

[1]/abs/1801.02108, Github:/uber/sbnet

[2]https://basicmi.github.io/Deep-Learning-Processor-List/

[3] /tensorrt-3-faster-tensorflow-inference/

[4] /int8-inference-autonomous-vehicles-tensorrt/

[5] /abs/1510.00149

[6] /abs/1802.06367, /winograd-2/, Github: /xingyul/Sparse-Winograd-CNN

[7] /abs/1707.06168, Github: /yihui-he/channel-pruning

[8]/abs/1707.06342

[9]/abs/1810.11809, Github:/Tencent/PocketFlow

[10] /abs/1708.06519, Github: /foolwood/pytorch-slimming

[11] /abs/1611.06440, Github: /jacobgil/pytorch-pruning

[12]/publication/ijcai--sfp/

[13] /abs/1603.05279, Github: /ayush29feb/Sketch-A-XNORNet

Github:/jiecaoyu/XNOR-Net-PyTorch

[14] /abs/1711.11294, Github: /layog/Accurate-Binary-Convolution-Network

[15] /abs/1708.08687

[16]/abs/1808.00278, Github:/liuzechun/Bi-Real-net

[17]/abs/1605.04711

[18] /abs/1612.01064, Github: /czhu95/ternarynet

[19] /papers/syq_cvpr18.pdf, Github: /julianfaraone/SYQ

[20] /abs/1712.05877

[21] http://on-/gtc//presentation/s7310-8-bit-inference-with-tensorrt.pdf

[22] /abs/1702.03044

[23] /paper/6390-cnnpack-packing-convolutional-neural-networks-in-the-frequency-domain

[24]/nature553863/article/details/97631176

[25]/nature553863/article/details/96857133

[26]/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

[27]/onnx/onnx-tensorrt

[28]/nature553863/article/details/97760040

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。