700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 概率状态空间模型

概率状态空间模型

时间:2024-08-28 22:25:13

相关推荐

概率状态空间模型

文章目录

概率状态空间模型(Probabilistic State Space Models)概率状态空间模型的定义状态 x k \boldsymbol{x}_k xk​的马尔可夫性质(*Markov property of states*)观测向量 y k \boldsymbol{ y}_k yk​的条件独立性(*Conditional independence of measurements*)

概率状态空间模型(Probabilistic State Space Models)

概率状态空间模型的定义

(Probabilistic state space model) A probabilistic state space model or non-linear filtering model consists of a sequence of conditional probability distributions:

x k ∼ p ( x k ∣ x k − 1 ) y k ∼ p ( y k ∣ x k ) (1) \begin{aligned} \boldsymbol x_k &\sim p(\boldsymbol x_k | \boldsymbol x_{k-1}) \\ \boldsymbol y_k &\sim p(\boldsymbol y_k | \boldsymbol x_k) \end{aligned} \tag{1} xk​yk​​∼p(xk​∣xk−1​)∼p(yk​∣xk​)​(1) for k = 1 , 2 , ⋯ k = 1,2,\cdots k=1,2,⋯,其中

x k ∈ R n \boldsymbol x_k \in \mathbb{R}^{n} xk​∈Rn是系统在时刻 k k k的状态; y k ∈ R m \boldsymbol y_k \in \mathbb{R}^{m} yk​∈Rm是时刻 k k k的观测向量; p ( x k ∣ x k − 1 ) p(\boldsymbol x_k | \boldsymbol x_{k-1}) p(xk​∣xk−1​)是一个动态系统模型,描述了系统的随机动态变化(stochasticc dynamics); p ( y k ∣ x k ) p(\boldsymbol y_k|\boldsymbol x_k) p(yk​∣xk​)是测量模型,描述了给定状态条件下的测量模型。

并且认为该模型为马尔可夫模型,如下图所示。这意味着它有两个重要性质。

状态 x k \boldsymbol{x}_k xk​的马尔可夫性质(Markov property of states)

The states { x k : k = 0 , 1 , 2 , ⋯ } \{ \boldsymbol x_k: k=0,1,2,\cdots \} {xk​:k=0,1,2,⋯} form a Markov sequence (or Markov chain if the state is discrete.). This Markov property means that x k \boldsymbol x_k xk​ (and actually the whole future x k + 1 , x k + 2 , ⋯ \boldsymbol x_{k+1}, \boldsymbol x_{k+2}, \cdots xk+1​,xk+2​,⋯) given x k − 1 \boldsymbol x_{k-1} xk−1​ isindependent of anythingthat has happened before the time step k − 1 k-1 k−1:

p ( x k ∣ x 1 : k − 1 , y 1 : k − 1 ) = p ( x k ∣ x k − 1 ) (2) p(\boldsymbol x_k | \boldsymbol x_{1:k-1}, \boldsymbol y_{1:k-1}) = p(\boldsymbol x_k|\boldsymbol x_{k-1}) \tag{2} p(xk​∣x1:k−1​,y1:k−1​)=p(xk​∣xk−1​)(2)

这里我们需要注意性质里边没有提到 x k \boldsymbol x_k xk​之后的状态(future state),由上图可知,我们知道 x k \boldsymbol x_k xk​与之后的状态/观测向量是有联系的,比如说: ∃ T > k \exist T > k ∃T>k

p ( x k ∣ x 1 : k − 1 , y 1 : T ) = p ( x k ∣ x k − 1 , y k : T ) p(\boldsymbol x_k | \boldsymbol x_{1:k-1}, \boldsymbol y_{1:T}) = p(\boldsymbol x_k|\boldsymbol x_{k-1}, \boldsymbol y_{k:T}) p(xk​∣x1:k−1​,y1:T​)=p(xk​∣xk−1​,yk:T​)

Also, the past isindependent of the futuregiven the present:

p ( x k − 1 ∣ x k : T , y k : T ) = p ( x k − 1 ∣ x k ) (3) p(\boldsymbol x_{k-1} | \boldsymbol x_{k:T}, \boldsymbol y_{k:T}) = p(\boldsymbol x_{k-1}|\boldsymbol x_{k}) \tag{3} p(xk−1​∣xk:T​,yk:T​)=p(xk−1​∣xk​)(3)

类似地,我们也需要注意, x k \boldsymbol x_k xk​与之前的状态/观测向量是有联系的,比如说:

p ( x k − 1 ∣ x k : T , y 1 : T ) = p ( x k − 1 ∣ x k , y 1 : k − 1 ) p(\boldsymbol x_{k-1} | \boldsymbol x_{k:T}, \boldsymbol y_{1:T}) = p(\boldsymbol x_{k-1}|\boldsymbol x_{k}, \boldsymbol y_{1:k-1}) p(xk−1​∣xk:T​,y1:T​)=p(xk−1​∣xk​,y1:k−1​)

观测向量 y k \boldsymbol{ y}_k yk​的条件独立性(Conditional independence of measurements)

The current measurement y k \boldsymbol{ y}_k yk​ given the current state x k \boldsymbol{ x}_k xk​ is conditionally independent of themeasurement and state histories:

p ( y k ∣ x 1 : k , y 1 : k − 1 ) = p ( y k ∣ x k ) p(\boldsymbol y_k|\boldsymbol x_{1:k}, \boldsymbol y_{1:k-1}) = p(\boldsymbol y_k | \boldsymbol x_k) p(yk​∣x1:k​,y1:k−1​)=p(yk​∣xk​)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。