700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 推导:从傅里叶级数展开到傅里叶变换

推导:从傅里叶级数展开到傅里叶变换

时间:2022-07-31 02:02:50

相关推荐

推导:从傅里叶级数展开到傅里叶变换

说明:本文主要参考资料为奥本海姆的《信号与系统》(第二版),推导过程中融入了少量个人理解。

假设我们已经知晓了周期信号的傅里叶级数展开,在连续信号条件下,其傅里叶级数对为

x(t)=∑k=−∞+∞akejkω0t=∑k=−∞+∞akejk(2π/T)t(1)(1)x(t)=∑k=−∞+∞akejkω0t=∑k=−∞+∞akejk(2π/T)tak=1T∫Tx(t)e−jkω0tdt=1T∫Tx(t)e−jk(2π/T)tdt(2)(2)ak=1T∫Tx(t)e−jkω0tdt=1T∫Tx(t)e−jk(2π/T)tdt

其中,公式(1)为综合公式,它描述如何将原始信号x(t)​x(t)​分解,公式(2)为分析公式,ak​ak​表示信号x(t)​x(t)​的傅里叶系数(也称为频谱系数),其物理意义是原始信号x(t)​x(t)​分解出来的每一个谐波分量强度的度量,其中当k=0​k=0​时,即a0​a0​就是原始信号x(t)​x(t)​的直流分量(也称为常数分量)。

类似地,在离散信号条件下,其傅里叶级数对为

x[n]=∑k=⟨N⟩akejkω0n=∑k=⟨N⟩akejk(2π/N)n(3)(3)x[n]=∑k=⟨N⟩akejkω0n=∑k=⟨N⟩akejk(2π/N)nak=1N∑n=⟨N⟩x[n]e−jkω0n=1N∑n=⟨N⟩x[n]e−jk(2π/N)n(4)(4)ak=1N∑n=⟨N⟩x[n]e−jkω0n=1N∑n=⟨N⟩x[n]e−jk(2π/N)n

其中,公式(3)为综合公式,公式(4)为分析公式,其物理意义与上述连续信号类似。

现在我们需要将其表示傅里叶展开的手法推广到非周期信号,首先引入基本思想:

非周期信号,可以被想象成周期无穷大的周期信号。对于周期信号而言,它的周期越大,那么它的基波频率ω0=2π/Tω0=2π/T就越小,同时分解出来的各个频率分量之间的“距离”也越近,这是因为频谱图频率轴上样本的间隔为2π/T2π/T(因为在周期复指数信号ejω0tejω0t中ω0ω0表示频率,相应地这里k(2π/T)k(2π/T)为频率,kk为整数,因此间隔为2π/T" role="presentation">2π/T),它随着周期的增大而变小。这样,在周期趋近于无穷大时,这些频率轴上的样本会越来越密,傅里叶展开由原来的许多项进行离散求和,而变为连续积分

现在,我们假设有一个非周期信号x(t)x(t),它具有有限的持续期,从该信号出发,可以构建一个信号x~(t)x~(t),使得x(t)x(t)是x~(t)x~(t)的一个周期,这样当周期TT无穷大时,x(t)" role="presentation">x(t)就可以等于x~(t)x~(t),由于x~(t)x~(t)是名义上的周期信号,因此我们可以先观察x~(t)x~(t)的傅里叶级数展开情况。x(t)x(t)和x~(t)x~(t)的函数示意图如下图所示。

将信号x~(t)x~(t)进行傅里叶展开,求解系数时,将积分区间设定为−T/2≤t≤T/2−T/2≤t≤T/2,有

x~(t)=∑k=−∞+∞akejkω0t(5)(5)x~(t)=∑k=−∞+∞akejkω0tak=1T∫T/2−T/2x~(t)e−jkω0tdt(6)(6)ak=1T∫−T/2T/2x~(t)e−jkω0tdt

其中ω0=2π/Tω0=2π/T,由于当|t|<T/2|t|<T/2时x(t)=x~(t)x(t)=x~(t),当|t|≥T/2|t|≥T/2时x(t)=0x(t)=0,所以(6)式可以改写为

ak=1T∫T/2−T/2x(t)e−jkω0tdt=1T∫+∞−∞x(t)e−jkω0tdt(7)(7)ak=1T∫−T/2T/2x(t)e−jkω0tdt=1T∫−∞+∞x(t)e−jkω0tdt

将(7)式两边乘以TT,约掉等式右边的分母T" role="presentation">T,有

Tak=∫+∞−∞x(t)e−jkω0tdt(8)(8)Tak=∫−∞+∞x(t)e−jkω0tdt

对上述(8)式进行变量替换,将kω0kω0替换为ωω,得到TakTak的包络X(jω)X(jω)

X(jω)=∫+∞−∞x(t)e−jωtdt(9)(9)X(jω)=∫−∞+∞x(t)e−jωtdt

这样,按照这种表达方式,可以重新将傅里叶系数表示为

ak=1TX(jω)=1TX(jkω0)(10)(10)ak=1TX(jω)=1TX(jkω0)

此时,再将刚刚得到的(10)式带入(5)式,可以重新描述x~(t)x~(t)的傅里叶展开式

x~(t)=∑k=−∞+∞1TX(jkω0)ejkω0t(11)(11)x~(t)=∑k=−∞+∞1TX(jkω0)ejkω0t

又因为2π/T=ω02π/T=ω0,因此(11)式可以进一步改写为

x~(t)=12π∑k=−∞+∞X(jkω0)ejkω0tω0(12)(12)x~(t)=12π∑k=−∞+∞X(jkω0)ejkω0tω0

注:公式(12)已经更正,在末尾增加了ω0ω0,感谢Myriad_Dreamin同学的指正!

上文已经提及,将傅里叶变换理解为周期无穷大的特殊情形,此时的傅里叶展开会由原来的离散求和变为连续积分,因此当T→∞T→∞时,x~(t)→x(t)x~(t)→x(t),上述(12)式将过渡为连续积分,并与上述公式(9)结合起来,有

x(t)=12π∫+∞−∞X(jω)ejωtdω(13)(13)x(t)=12π∫−∞+∞X(jω)ejωtdωX(jω)=∫+∞−∞x(t)e−jωtdt(9)(9)X(jω)=∫−∞+∞x(t)e−jωtdt

公式(13)和公式(9)就是傅里叶变换对,其中上面一行的公式(13)称为傅里叶逆变换(inverse Fourier transform),下面一行的公式(9)称为x(t)x(t)的傅里叶变换(Fourier transform)傅里叶积分,X(jω)X(jω)通常称为x(t)x(t)的频谱

这样,从傅里叶级数到傅里叶变换的推导就完成了。

总结:从傅里叶级数展开,到傅里叶变换,关键并不在于其中的数学推导,上述的代数推导中主要以变量替换为主,其表达方式与傅里叶级数展开并无太大区别,真正需要我们理解的是其中的思想:周期无穷大后,因为频率样本越来越密集,从而形成连续积分。明白了这一点,就不难理解傅里叶变换了。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。