700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 傅里叶级数展开和傅里叶变换(一)

傅里叶级数展开和傅里叶变换(一)

时间:2021-12-12 16:27:54

相关推荐

傅里叶级数展开和傅里叶变换(一)

本文是DR_CAN的系列教学视频的学习笔记

文章目录

一、三角函数的正交性二、周期为2π2\pi2π的级数展开三、周期为2L的级数展开四、傅里叶级数的复数形式4.1 周期为2π2\pi2π的函数的傅里叶级数展开4.2 周期为2L2L2L的函数的傅里叶级数的复数形式五、傅里叶变换

一、三角函数的正交性

下列三角函数组具有正交性

S={0,1,cos⁡(x),sin⁡(x)cos⁡(2x),sin⁡(2x),...,cos⁡(nx),sin⁡(nx),...}S=\{0,1,\cos(x),\sin(x)\,\cos(2x),\sin(2x),...,\cos(nx),\sin(nx),...\} S={0,1,cos(x),sin(x)cos(2x),sin(2x),...,cos(nx),sin(nx),...}

具体表现为

∀f(x),g(x)∈S∧f≠g,∫−ππf(x)⋅g(x)dx=0\forall f(x),g(x)\in S \wedge f\neq g,\int_{-\pi}^{\pi} f(x)\cdot g(x)dx=0 ∀f(x),g(x)∈S∧f​=g,∫−ππ​f(x)⋅g(x)dx=0

证明如下:

函数组内的不同函数正交

函数组内的两不同函数求内积时有以下三种情况(m,n∈Z)(m,n\in Z)(m,n∈Z)

∫−ππcos⁡(mx)⋅cos⁡(nx)dx=∫−ππ12[cos⁡(m+n)x+cos⁡(m−n)x]dx=0(m≠n)\int_{-\pi}^{\pi} \cos (m x) \cdot \cos (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (m+n) x+\cos (m-n) x] d x=0\,(m\neq n) ∫−ππ​cos(mx)⋅cos(nx)dx=∫−ππ​21​[cos(m+n)x+cos(m−n)x]dx=0(m​=n)

∫−ππsin⁡(mx)⋅sin⁡(nx)dx=∫−ππ−12[cos⁡(m+n)x−cos⁡(m−n)x]dx=0(m≠n)\int_{-\pi}^{\pi} \sin (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} -\frac{1}{2}[\cos (m+n) x-\cos (m-n) x] d x=0\,(m\neq n) ∫−ππ​sin(mx)⋅sin(nx)dx=∫−ππ​−21​[cos(m+n)x−cos(m−n)x]dx=0(m​=n)

∫−ππcos⁡(mx)⋅sin⁡(nx)dx=∫−ππ12[sin⁡(m+n)x−sin⁡(m−n)x]dx=0\int_{-\pi}^{\pi} \cos (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\sin (m+n) x-\sin (m-n) x] d x=0 ∫−ππ​cos(mx)⋅sin(nx)dx=∫−ππ​21​[sin(m+n)x−sin(m−n)x]dx=0

函数组内同一函数内积

当m=0m=0m=0时,

∫−ππcos⁡2(mx)dx=2π,∫−ππsin⁡2(mx)dx=0\int_{-\pi}^{\pi}\cos^2(mx)dx=2\pi,\, \int_{-\pi}^{\pi}\sin^2(mx)dx=0∫−ππ​cos2(mx)dx=2π,∫−ππ​sin2(mx)dx=0

当m≠0m\neq0m​=0时,

∫−ππcos⁡(mx)⋅cos⁡(mx)dx=∫−ππ12[cos⁡(2mx)+1]dx=π\int_{-\pi}^{\pi} \cos (m x) \cdot \cos (m x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (2mx)+1] d x=\pi ∫−ππ​cos(mx)⋅cos(mx)dx=∫−ππ​21​[cos(2mx)+1]dx=π

∫−ππsin⁡(mx)sin⁡(mx)dx=∫−ππ(1−cos⁡2(mx))dx=π\int_{-\pi}^{\pi} \sin(mx) \sin(mx) dx=\int_{-\pi}^{\pi} (1-\cos^2(mx))dx=\pi ∫−ππ​sin(mx)sin(mx)dx=∫−ππ​(1−cos2(mx))dx=π

二、周期为2π2\pi2π的级数展开

考虑函数f(x)=f(x+2π)f(x)=f(x+2\pi )f(x)=f(x+2π),将函数写成如下形式

f(x)=∑n=0∞ancos⁡(nx)+bnsin⁡(nx)f(x)=\sum_{n=0}^{\infty} a_n\cos (nx)+b_n\sin(nx) f(x)=n=0∑∞​an​cos(nx)+bn​sin(nx)

或是

f(x)=a02+∑n=1∞ancos⁡(nx)+bnsin⁡(nx)f(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (nx)+b_n\sin(nx) f(x)=2a0​​+n=1∑∞​an​cos(nx)+bn​sin(nx)

显然函数的周期仍然为2π2\pi2π.

现通过将f(x)f(x)f(x)与正交函数组中的函数求内积的方法求出级数中的系数项,考虑展开式的后一种写法最终可以得到

an=1π∫−ππf(x)cos⁡(nx)dxa_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\cos(nx)dxan​=π1​∫−ππ​f(x)cos(nx)dx

bn=1π∫−ππf(x)sin⁡(nx)dxb_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\sin(nx)dxbn​=π1​∫−ππ​f(x)sin(nx)dx

三、周期为2L的级数展开

周期为2L的函数主要通过坐标系变换得到其傅里叶级数展开。

对于函数f(t)=f(t+2L)f(t)=f(t+2L)f(t)=f(t+2L),令

x=πL⋅tx=\dfrac{\pi}{L}\cdot tx=Lπ​⋅t

并记

g(x)=g(πL⋅t)=f(t)g(x)=g(\dfrac{\pi}{L}\cdot t)=f(t)g(x)=g(Lπ​⋅t)=f(t)

于是有g(x+2π)=g(πL⋅t+2π)=g(πL(t+2L))=g(x)g(x+2\pi)=g(\dfrac{\pi}{L}\cdot t+2\pi)=g(\dfrac{\pi}{L}(t+2L))=g(x)g(x+2π)=g(Lπ​⋅t+2π)=g(Lπ​(t+2L))=g(x),即g(x)g(x)g(x)是一周期为2π2\pi2π的周期函数。

根据周期为2π2\pi2π的函数的傅里叶展开公式,可以得到g(x)g(x)g(x)的各项系数为

g(x)=a02+∑n=1∞ancos⁡(nx)+bnsin⁡(nx)g(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (nx)+b_n\sin(nx) g(x)=2a0​​+n=1∑∞​an​cos(nx)+bn​sin(nx)

an=1π∫−ππf(x)cos⁡(nx)dxa_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\cos(nx)dxan​=π1​∫−ππ​f(x)cos(nx)dx

bn=1π∫−ππf(x)sin⁡(nx)dxb_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\sin(nx)dxbn​=π1​∫−ππ​f(x)sin(nx)dx

带入x=πL⋅tx=\dfrac{\pi}{L}\cdot tx=Lπ​⋅t即有

f(t)=g(x)=a02+∑n=1∞ancos⁡(nπL⋅t)+bnsin⁡(nπL⋅t)f(t)=g(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (\dfrac{n\pi}{L}\cdot t)+b_n\sin(\dfrac{n\pi}{L}\cdot t) f(t)=g(x)=2a0​​+n=1∑∞​an​cos(Lnπ​⋅t)+bn​sin(Lnπ​⋅t)

an=1π∫−LLf(x)cos⁡(nπL⋅t)d(πL⋅t)=1L∫−LLf(t)cos⁡(nπL⋅t)dta_n=\dfrac{1}\pi\int_{-L}^{L}f(x)\cos(\dfrac{n\pi}{L}\cdot t)\,d(\dfrac{\pi}{L}\cdot t)=\dfrac{1}L\int_{-L}^{L}f(t)\cos(\dfrac{n\pi}{L}\cdot t)dtan​=π1​∫−LL​f(x)cos(Lnπ​⋅t)d(Lπ​⋅t)=L1​∫−LL​f(t)cos(Lnπ​⋅t)dt

bn=1π∫−LLf(x)sin⁡(nπL⋅t)d(πL⋅t)=1L∫−LLf(t)sin⁡(nπL⋅t)dtb_n=\dfrac{1}\pi\int_{-L}^{L}f(x)\sin(\dfrac{n\pi}{L}\cdot t)\,d(\dfrac{\pi}{L}\cdot t)=\dfrac{1}L\int_{-L}^{L}f(t)\sin(\dfrac{n\pi}{L}\cdot t)dtbn​=π1​∫−LL​f(x)sin(Lnπ​⋅t)d(Lπ​⋅t)=L1​∫−LL​f(t)sin(Lnπ​⋅t)dt

由于工程上的时间并没有负值,因此记T=2LT=2LT=2L为函数的周期,并记ω=2πT\omega=\dfrac{2\pi}{T}ω=T2π​,函数即满足f(t)=f(t+T)f(t)=f(t+T)f(t)=f(t+T). 此时函数的傅里叶展开为

f(t)=a02+∑n=1∞ancos⁡(nωt)+bnsin⁡(nωt)f(t)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (n\omega t)+b_n\sin(n\omega t) f(t)=2a0​​+n=1∑∞​an​cos(nωt)+bn​sin(nωt)

an=ωπ∫0Tf(t)cos⁡(nωt)dta_n=\dfrac{\omega}\pi\int_{0}^{T}f(t)\cos(n\omega t)dtan​=πω​∫0T​f(t)cos(nωt)dt

bn=ωπ∫0Tf(t)sin⁡(nωt)dtb_n=\dfrac{\omega}\pi\int_{0}^{T}f(t)\sin(n\omega t)dtbn​=πω​∫0T​f(t)sin(nωt)dt

四、傅里叶级数的复数形式

4.1 周期为2π2\pi2π的函数的傅里叶级数展开

这里要用到欧拉公式(欧拉方程,Euler’s formula)

eiθ=cos⁡(θ)+isin⁡(θ)e^{i\theta}=\cos(\theta)+i\sin(\theta)eiθ=cos(θ)+isin(θ)

于是可以得到

cos⁡(θ)=eiθ+e−iθ2,sin⁡(θ)=eiθ−e−iθ2i\cos(\theta)=\dfrac{e^{i\theta}+e^{-i\theta}}{2},\, \sin(\theta)=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}cos(θ)=2eiθ+e−iθ​,sin(θ)=2ieiθ−e−iθ​

带入方程中有f(x)=a02+∑n=1∞[ancos⁡(nx)+bnsin⁡(nx)]=a02+∑n=1∞an×einx+e−inx2+bn×einx−e−inx2if(x)=\dfrac{a_0}{2}+\sum_{n=1}^{\infty}[ a_n\cos(nx)+b_n\sin(nx)]=\dfrac{a_0}2+\sum_{n=1}^{\infty}a_n\times\dfrac{e^{inx}+e^{-inx}}{2}+b_n\times\dfrac{e^{inx}-e^{-inx}}{2i}f(x)=2a0​​+n=1∑∞​[an​cos(nx)+bn​sin(nx)]=2a0​​+n=1∑∞​an​×2einx+e−inx​+bn​×2ieinx−e−inx​

整理可得

f(x)=a02+∑n=1∞an−ibn2×einx+∑n=1∞an+ibn2×e−inx‾f(x)=\dfrac{a_0}2+\sum_{n=1}^{\infty}\dfrac{a_n-ib_n}2\times e^{inx}+\underline{\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}}f(x)=2a0​​+n=1∑∞​2an​−ibn​​×einx+n=1∑∞​2an​+ibn​​×e−inx​

下划线中的部分用−n→n-n\rightarrow n−n→n即有

∑n=1∞an+ibn2×e−inx=∑n=−∞−1a−n+ib−n2×einx\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}=\sum_{n=-\infty}^{-1}\dfrac{a_{-n}+ib_{-n}}2\times e^{inx}n=1∑∞​2an​+ibn​​×e−inx=n=−∞∑−1​2a−n​+ib−n​​×einx

根据前文的an和bna_n和b_nan​和bn​的表达式易知a−n=an,b−n=−bna_{-n}=a_{n},b_{-n}=-b_na−n​=an​,b−n​=−bn​带入上式中即有

∑n=1∞an+ibn2×e−inx=∑n=−∞−1an−ibn2×einx\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}=\sum_{n=-\infty}^{-1}\dfrac{a_{n}-ib_{n}}2\times e^{inx}n=1∑∞​2an​+ibn​​×e−inx=n=−∞∑−1​2an​−ibn​​×einx

另外a02=a0+ib02×e−i0x\dfrac{a_0}{2}=\dfrac{a_0+ib_0}2\times e^{-i0x}2a0​​=2a0​+ib0​​×e−i0x

于是有

f(x)=(an−ibn2×einx)n=0+∑n=1∞an−ibn2×einx+∑n=−∞−1an−ibn2×einx=∑an−ibn2×einxf(x)=(\dfrac{a_{n}-ib_{n}}2\times e^{inx})_{n=0}+\sum_{n=1}^{\infty}\dfrac{a_n-ib_n}2\times e^{inx}+\sum_{n=-\infty}^{-1}\dfrac{a_{n}-ib_{n}}2\times e^{inx}=\sum \dfrac{a_n-ib_n}2\times e^{inx}f(x)=(2an​−ibn​​×einx)n=0​+n=1∑∞​2an​−ibn​​×einx+n=−∞∑−1​2an​−ibn​​×einx=∑2an​−ibn​​×einx

记cn=an−ibn2=12π[∫−ππf(x)cos⁡(nx)dx−i∫−ππf(x)sin⁡(nx)dx]=12π∫−ππf(x)[cos⁡(nx)−isin⁡(x)]dx=12π∫−ππf(x)e−inxdxc_n= \dfrac{a_n-ib_n}2=\dfrac1{2\pi}[\int_{-\pi}^{\pi}f(x)\cos(nx)dx-i\int_{-\pi}^{\pi}f(x)\sin(nx)dx]=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}f(x)[\cos(nx)-i\sin(x)]dx=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dxcn​=2an​−ibn​​=2π1​[∫−ππ​f(x)cos(nx)dx−i∫−ππ​f(x)sin(nx)dx]=2π1​∫−ππ​f(x)[cos(nx)−isin(x)]dx=2π1​∫−ππ​f(x)e−inxdx得到

f(x)=∑cn×einx,cn=an−ibn2{f(x)=\sum c_n\times e^{inx}} \, ,c_n= \dfrac{a_n-ib_n}2f(x)=∑cn​×einx,cn​=2an​−ibn​​

上式即周期为2π2\pi2π时的傅里叶级数的复数形式。

值得注意的是,对于实数范围内的函数,cnc_ncn​与c−nc_{-n}c−n​是共轭的。

取f(x)f(x)f(x)展开式中当的±n\pm n±n项求和为实数即可证明二者是共轭。

4.2 周期为2L2L2L的函数的傅里叶级数的复数形式

周期为2L2L2L的函数计算过程与周期为2π2\pi2π时的计算过程大致相同,其具体形式为

f(t)=f(t+T)=∑cneinωt,cn=1L∫0Lf(x)e−inwxdxf(t)=f(t+T)=\sum c_ne^{in\omega t}\, , c_n=\dfrac{1}{L}\int_{0}^{L}f(x)e^{-inwx}dxf(t)=f(t+T)=∑cn​einωt,cn​=L1​∫0L​f(x)e−inwxdx

an和bna_n和b_nan​和bn​的表达式前文已经提及.

五、傅里叶变换

对于非周期函数,可以将其理解成周期为∞\infty∞的周期函数,此时T→∞,w=2πT→0T\rightarrow\infty,w=\dfrac{2\pi}{T}\rightarrow 0T→∞,w=T2π​→0.

f(t)=lim⁡T→∞fT(t)=lim⁡ω→0∑−∞∞1T∫0TfT(t)e−inωtdt⋅einωt=lim⁡ω→0∑−∞∞ω2π∫0TfT(t)e−inwtdt⋅einωt\begin{aligned} f(t)=\lim_{T\rightarrow\infty}f_{T}(t) &=\lim_{\omega\rightarrow 0}\sum_{-\infty}^{\infty} \frac{1}{T} \int_{0}^{T} f_{T}(t) e^{-i n \omega t} d t \cdot e^{i n \omega t} \\ &=\lim_{\omega\rightarrow 0}\sum_{-\infty}^{\infty} \frac{\omega}{2 \pi} \int_{0}^{T} f_{T}(t) e^{-i n w t} d t \cdot e^{i n \omega t} \end{aligned} f(t)=T→∞lim​fT​(t)​=ω→0lim​−∞∑∞​T1​∫0T​fT​(t)e−inωtdt⋅einωt=ω→0lim​−∞∑∞​2πω​∫0T​fT​(t)e−inwtdt⋅einωt​

注意到ω=(n+1)ω−nω=Δω\omega=(n+1)\omega-n\omega=\Delta \omegaω=(n+1)ω−nω=Δω,上式可以继续化简为

f(t)=lim⁡T→∞fT(T)=lim⁡ω→0∑−∞+∞Δω2π∫−∞+∞f(t)e−inωtdt⋅einωt=∫−∞+∞dω2π∫−∞+∞f(t)e−iωtdt⋅eiωt=12π∫−∞+∞∫−∞+∞f(t)e−iωtdt⋅eiωtdω\begin{aligned} f(t)=\lim _{T \rightarrow \infty} f_{T} (T) &=\lim _{\omega \rightarrow 0} \sum_{-\infty}^{+\infty} \frac{\Delta \omega}{2 \pi} \int_{-\infty}^{+ \infty} f(t) e^{-i n \omega t } d t \cdot e^{i n \omega t} \\ &=\int_{-\infty}^{+\infty} \frac{d\omega}{2 \pi} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t } d t \cdot e^{i \omega t} \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t \cdot e^{i \omega t} d \omega \end{aligned} f(t)=T→∞lim​fT​(T)​=ω→0lim​−∞∑+∞​2πΔω​∫−∞+∞​f(t)e−inωtdt⋅einωt=∫−∞+∞​2πdω​∫−∞+∞​f(t)e−iωtdt⋅eiωt=2π1​∫−∞+∞​∫−∞+∞​f(t)e−iωtdt⋅eiωtdω​

记F(ω)=∫−∞∞f(t)e−iωtdtF(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dtF(ω)=∫−∞∞​f(t)e−iωtdt为f(t)f(t)f(t)的傅里叶变换,带入上式得到f(t)=12π∫−∞∞F(ω)eiωtdωf(t)=\dfrac1{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omegaf(t)=2π1​∫−∞∞​F(ω)eiωtdω即为傅里叶变换的逆变换。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。