700字范文,内容丰富有趣,生活中的好帮手!
700字范文 > 已知函数 设g(x)=x2?f'(x)(x>0)(1)是否存在唯一实数a∈(m m+1) 使得g

已知函数 设g(x)=x2?f'(x)(x>0)(1)是否存在唯一实数a∈(m m+1) 使得g

时间:2018-12-04 12:01:13

相关推荐

已知函数 设g(x)=x2?f'(x)(x>0)(1)是否存在唯一实数a∈(m m+1) 使得g

问题补充:

已知函数,设g(x)=x2?f(x)(x>0)

(1)是否存在唯一实数a∈(m,m+1),使得g(a)=0,若存在,求正整数m的值;若不存在,说明理由.

(2)当x>0时,f(x)>n恒成立,求正整数n的最大值.

答案:

解:(1)由,得??g(x)=x-1-ln(x+1)(x>0),

则,因此g(x)在(0,+∞)内单调递增.(4分)

因为g(2)=1-ln3<0,g(3)=2(1-ln2)>0,

即g(x)=0存在唯一的根a∈(2,3),于是m=2,(6分)

(2)由f(x)>n得,n<f(x)且x∈(0,+∞)恒成立,

由第(1)题知存在唯一的实数a∈(2,3),使得g(a)=0,且当0<x<a时,g(x)<0,f′(x)<0;

当x>a时,g(x)>0,f′(x)>0,

因此当x=a时,f(x)取得最小值(9分)

由g(a)=0,得?a-1-ln(a+1)=0,即??1+ln(a+1)=a,于是??f(a)=a+1

又由a∈(2,3),得f(a)∈(3,4),从而n≤3,故正整数n的最大值为3.(12分)

解析分析:(1)先对f(x)求导,得出g(x)=x-1-ln(x+1),再利用零点存在性定理可以研究g(x)的零点情况,做出解答.(2)当x>0时,f(x)>n恒成立,需考察f(x)的最小值情况.由第(1)题知存在唯一的实数a∈(2,3),使得g(a)=0,且当0<x<a时,g(x)<0,f′(x)<0;当x>a时,g(x)>0,f′(x)>0,因此当x=a时,f(x)取得最小值.利用g(a)=0,得?出?f(a)=a+1,结合a∈(2,3)得出f(a)∈(3,4),从而n≤3,故正整数n的最大值为3.

点评:本题考查了函数单调性与导数的应用:求最值,零点、恒成立问题.考察转化、计算、推理论证能力.

已知函数 设g(x)=x2?f(x)(x>0)(1)是否存在唯一实数a∈(m m+1) 使得g(a)=0 若存在 求正整数m的值;若不存在 说明理由.(2)当x>0

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。